

User Manual UMAX140910
Version 3.1

Software Support Package 3.0.xx

USER MANUAL

CAN-ENET
Software Support Package

P/N: AX140910

UMAX140910. CAN-ENET Software Support Package. Version 3.1
ii

ACRONYMS

API Application Programming Interface
ASCII American Standard Code for Information Interchange
BSD Berkeley Software Distribution
CAN Controller Area Network
HTML HyperText Markup Language
IP Internet Protocol
LAN Local Area Network
SSP Software Support Package

UMAX140910. CAN-ENET Software Support Package. Version 3.1
iii

TABLE OF CONTENTS

1 GENERAL INFORMATION .. 4

2 SSP CONTENTS ... 5

2.1 Source Files ... 5

2.2 Examples ... 6

3 DATA TYPES AND CODING STYLE .. 7

4 USING SSP ... 8

4.1 Receiving Messages from the Converter ... 8

4.2 Sending Messages to the Converter .. 11

4.3 Discovering the Converter ... 12

5 DOCUMENTATION ... 14

6 LICENSE ... 15

7 VERSION HISTORY .. 16

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 4-16

1 GENERAL INFORMATION
The CAN-ENET Software Support Package (SSP) provides a set of software modules,
documentation, and examples for developing application software working with various
Axiomatic Ethernet to CAN and Wi-Fi to CAN converters.

The user manual is valid for the SSP with the same two major version numbers as the user
manual. For example, this user manual is valid for any SSP version 3.0.xx. Updates specific to
the user manual are done by adding letters: A, B, …, Z to the user manual version number.

All SSP software modules are written in a standard C programming language for portability
and fully documented. They provide support for Axiomatic proprietary Communication and
Discovery protocols. The Communication protocol is mainly used for transmitting CAN
messages over Ethernet or any other IP network, and the Discovery protocol – for locating the
converter on the LAN.

The SSP can be equally used for programming embedded systems with limited resources and
for application programming in Windows or Linux.

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 5-16

2 SSP CONTENTS
The SSP is distributed as a zip file with the name: CANEnetSSPv<X.X.XY>.zip, where
<X.X.X> numbers refer to the SSP main version number and <Y> – to the optional
documentation change letter.

To avoid potential issues with displaying the SSP help file, the distribution zip file should be
unblocked in Windows if acquired over the internet (after downloading from the Axiomatic
website, receiving in e-mail as an attachment, etc.) This can be done by right-clicking the file
and pressing the Unblock button in Properties->General->Unblock.

After extracting the zip archive, the following folder structure will be created:

Figure 1. Folder Structure for SSP version 3.0.0

The root directory contains the SSP help file CANEnetSSP.chm in the Microsoft HTML help
format and this user manual UMAX140910v3.0.pdf in the Adobe Reader format.

The most significant SSP version number reflects incompatible changes, next – compatible
changes, the last one – minor changes not affecting the SSP functionality. The optional letter is
added for changes in the user manual and/or help file.

2.1 Source Files

The SSP source files are grouped in .\Source and .\Inc directories according to their
type. They are written in standard C and present the following software modules:
• PMessage. Provides support for the protocol independent message structure described in

the Ethernet to CAN Converter Communication Protocol.
• CommProtocol. Supports messages from the Ethernet to CAN Converter Communication

Protocol.
• DiscProtocol. Supports messages from the Ethernet to CAN Converter Discovery

Protocol.
• HealthData. Provides data structures and functions for processing the Ethernet to CAN

converter health status information described in the Ethernet to CAN Converter
Communication Protocol.

All basic data types and common macros are defined in the CommonTypes.h file.

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 6-16

2.2 Examples

The SSP also contains the following example programs in the .\Examples directory
demonstrating different scenarios of communication with the Axiomatic Ethernet to CAN
converter:
• CANReceive.c. This console application shows how CAN frames can be received from

the Axiomatic Ethernet to CAN converter.
• CANSend.c. This example demonstrates how CAN frames can be sent to the Axiomatic

Ethernet to CAN converter.
• Discovery.c. This example application shows how the user can discover an Axiomatic

Ethernet to CAN converter on the local area network (LAN).
• Heartbeat.c. This application demonstrates how Heartbeat messages can be received

from the Axiomatic Ethernet to CAN converter. It also shows unpacking of the Health Data
from Heartbeat messages.

• StatusRequest.c. This example application shows how the user can request the
Axiomatic Ethernet to CAN converter status.

All examples can be built on Microsoft Windows or Linux using Windows.mk or Linux.mk
make files. The make files are also located in the .\Examples directory.

Upon building executable files, the make script, if necessary, creates .\Bin subdirectory in
the .\Examples directory where it places all executable and object files. The SSP zip file
contains compiled examples for Windows in the .\Bin subdirectory.

All SSP examples were tested on Windows 10 and Linux Ubuntu 16.04.

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 7-16

3 DATA TYPES AND CODING STYLE
The SSP uses only int and char standard data types. The int type is used when the exact
or maximum data size for the integer parameter is not critical. The char type is used to point
to an ASCII string or reference a single ASCII character. Other basic types are derived from
<stdint.h> header and have the exact data size, except the Boolean type BOOL_t, which is
derived from int, see: CommonTypes.h file.

All SSP exported basic types are named with capital letters and have the '_t' ending. For
example: BOOL_t, WORD_t, etc.

All other exported types are named with capital letters, have the '_t' ending and are prefixed
with the file abbreviation for the file they are defined in. The 'CP' is used for the
CommProtocol.h, 'DP' - for the DiscProtocol.h, 'HD' - for the HealthData.h and
'PM' - for the PMessage.h file.

All macros names use capital letters and are prefixed with the file abbreviation for the file they
are defined in, the same way as data types. The 'CT' abbreviation is used for the
CommonTypes.h file.

The variable names are prefixed with their type for basic types and pointers. For example: int
type is prefixed with 'i', pointer type - with 'p', pointer to integer - with 'pi', etc.
Structures, unions, enumerators are not prefixed. For zero terminated strings, the 'sz' prefix
is used.

The function names are prefixed with the file abbreviation the same way as data types and
macros.

One tab is equal to four spaces.

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 8-16

4 USING SSP
The user should add the SSP files to the application project. The CommProtocol.c or
DiscProtocol.c can be excluded if the appropriate protocol is not used. The
HealthData.c can also be excluded if there is no need to process the converter health data.

The SSP does not require initialization prior to use. It does not have any global variables. All
SSP functions are thread-safe and reentrant.

For sending and receiving the converter messages, a support of the Internet protocol (IP) is
required. A standard way to provide this support is to use Internet sockets. The socket API is
well standardized and is used in all SSP examples and for description of the converter
operations.

4.1 Receiving Messages from the Converter

The user should first prepare a socket for receiving the converter data.

When the data is received, it should be passed to the PMParseFromBuffer() function. The
user provides two callback functions: OnDataParsed() and OnDataParsedError(). The
first function is invoked after the protocol message has been successfully parsed and the
second one – on the parsing error.

Then, the user should call parsers for individual protocol-specific messages inside the
OnDataParsed() function, see below:

BYTE_t RxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE];
PM_PROTOCOL_PARSER_t PParser;
int iBytesReceived;

/* Initializing the parser */
memset(&PParser, 0, sizeof(PParser));

/** Receiving data in the RxData buffer.
 * iSocket - the socket descriptor. The socket should be already initialized and ready
 * for receiving.
 *
 */
iBytesReceived = recv(iSocket, RxData, sizeof(RxData), 0);
if(iBytesReceived > 0)
{
 /** Data has been successfully received.
 * Now we are calling the protocol message parser.
 *
 */
 PMParseFromBuffer(RxData, iBytesReceived, &PParser, OnDataParsed, OnDataParsedError,
 NULL);
}

/* This function is called after the protocol message has been successfully parsed. */
void OnDataParsed(PROTOCOL_MESSAGE_t *pPMessage, void *arg)
{
 DWORD_t dwHealthData, dwCANRxDErrors, dwCANTxDErrors, dwCANBusOffErrors;
 DWORD_t dwMessageNumber, dwTimeInterval;
 CP_CONVERTER_TYPE_t ConverterType;
 CP_COMMUNICATION_NODE_SETTINGS_t CommNodeSettings;

 /* Parsing Communication Protocol Messages. */

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 9-16

 /** Parsing CAN FD Stream. Added in SSP version 3.0.0.
 *
 * The CPParseCANFDStream() parser is provided with a callback function which is
 * called on successful parsing of a CAN FD frame. The CAN FD frame can also contain
 * a Classical CAN frame.
 * The callback functions can be called multiple times if several CAN FD frames are
 * embedded in one protocol message.
 *
 */
 if(CPParseCANFDStream(pPMessage, OnCANFDFrameParsed, arg))
 {
 /* The CAN FD Stream has been parsed. Add your code here if necessary. */

 return;
 }

 /** Parsing CAN and Notification Stream. Deprecated in SSP v3.0.0 and used only for
 * compatibility with older software. The new software should use CAN FD Stream
 * with CPParseCANFDStream() parser.
 *
 * The CPParseCANDataAndNotificationStream() parser is provided with two callback
 * functions, which are called on successful parsing of CAN or Notification frames.
 * The callback functions can be called multiple times if several CAN or Notification
 * frames are embedded in one protocol message.
 *
 */
 if(CPParseCANDataAndNotificationStream(pPMessage, OnCanFrameParsed,
 OnNotificationFrameParsed,arg))
 {
 /* The CAN and Notification Stream has been parsed. Add your code here
 if necessary. */

 return;
 }

 /** Parsing Communication Protocol Status Request Message.
 */
 if(CPParseStatusRequest(pPFrame)
 {
 /** The Status Request Message has been received.
 *
 * Reply with Status Response Message to let the requesting node know whether
 * the CAN FD stream is supported by your node and convey other communication
 * settings to the requested node. Nodes supporting CAN FD Stream will not start
 * sending CAN frames to your node until they acquire communication settings
 * of your node either through a Status Response or a Heartbeat message.
 *
 * Add your code here.
 *
 */

 return;
 }

 /** Parsing Communication Protocol Status Response Message.
 */
 if(CPParseStatusResponse(pPFrame, &dwHealthData, &dwCANRxDErrors, &dwCANTxDErrors,
 &dwCANBusOffErrors, &ConverterType, &CommNodeSettings))
 {
 /** The Status Response Message has been parsed.
 *
 * CommNodeSettings structure contains communication settings of the node.
 * It includes addresses of CAN message stream sources that the node will accept.
 *
 * Add your code here.
 *

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 10-16

 */

 return;
 }

 /** Parsing Heartbeat Message.
 */
 If(CPParseHeartbeat(pPFrame, &dwMessageNumber, &dwTimeInterval, &dwHealthData,
 &ConverterType, &CommNodeSettings))
 {
 /** The Heartbeat Message has been parsed.
 *
 * CommNodeSettings structure contains communication settings of the node.
 * It includes addresses of CAN message stream sources that the node will accept.
 *
 * Add your code here.
 *
 */

 return;
 }

 /** Unknown protocol message
 *
 */
 printf("Error. Unknown protocol message. ProtocolID=%u MessageID=%u\n",
 pPMessage->wProtocolID, pPMessage->wMessageID);
}

/** This function is called after a CAN FD frame has been successfully parsed.
 * The CP_CAN_FD_FRAME_t structure contains either CAN FD or Classical CAN frame.
 */
void OnCANFDFrameParsed(CP_CAN_FD_FRAME_t *pCANFDFrame,CP_CAN_FRAME_ROUTING_DATA_t
 *pCANFrameRoutingData,DWORD_t dwAbsTimeStamp,void *arg)
{
 /* Add your code here */
}

/** This function is called after a Classical CAN Frame has been successfully parsed.
Deprecated in SSP v3.0.0
 *
 */
void OnCanFrameParsed(CP_CAN_FRAME_t *pCANFrame,void *arg)
{
 /* Add your code here */
}

/** This function is called after a Notification Frame has been successfully parsed.
 * Deprecated in SSP v3.0.0
 */
void OnNotificationFrameParsed(CP_NOTIFICATION_FRAME_t *pNotificationFrame,void *arg)
{
 /* Add your code here */
}

If the user wants to parse the dwHealthData value into individual operational statuses of the
converter major hardware and software components, the HDUnpackHealthData() function
should be called:

DWORD dwHealthData;
HD_HEALTH_DATA_t HealthData;
CP_CONVERTER_TYPE_t ConverterType;
HD_OPERATIONAL_STATUS_t ConverterHealthStatus;

ConverterHealthStatus = HDUnpackHealthData(dwHealthData, &HealthData, ConverterType);

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 11-16

This function also returns the converter aggregated Health Status.

4.2 Sending Messages to the Converter

User messages can be sent to the converter by first generating the required protocol message
and then copying the message to the transmitting buffer. For example, sending a status
request will require the following commands:

BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE];
PM_PROTOCOL_MESSAGE_t PMessage;
BOOL_t bResult;
int iBytesToSend;
int iBytesSent;

/* Preparing the Status Request message. */
CPGenStatusRequestMessage(&PMessage);
/* Copying the message to the transmit buffer TxData. */
bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend);
assert(bResult);

/* Sending the Status Request message.
 iSocket - the socket descriptor. The socket should be already initialized and
 ready for sending. */
iBytesSent=send(iSocket, TxData, iBytesToSend,0);

Sending CAN FD frames is more elaborated. The CAN FD Stream message can contain more
than one CAN FD or Classical CAN frame, unless
CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE
flag is set by the node in the Status Response or Heartbeat message. The user should first
prepare an empty CAN FD Stream message and then add CAN frames to it.

BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE];
PM_PROTOCOL_MESSAGE_t PMessage;
CP_COMMUNICATION_NODE_SETTINGS_t CommNodeSettings;
CP_CAN_FD_FRAME_t CANFDFrame;
BOOL_t bResult;
int iBytesToSend;
int iBytesSent;

/* Preparing an empty CAN FD Stream message */
CPPrepareCANFDStream(&PMessage);

/** Adding CAN frames to the CAN FD Stream.
 * CPIsCANFDFrameFit() checks if there is enough room for the CAN FD frame to fit into the
CAN FD Stream.
 * CANGetFrame() gets a CAN FD frame (or a Classical CAN frame) from a driver or other
source.
 * CPAddCANFDFrame() adds CAN FD frame to the stream.
 *
 */
while(CPIsCANFDFrameFit(&PMessage))
{
 CANGetFrame(&CANFrame);

 CPAddCANFDFrame(&PMessage,&CANFrame);
 if((CP_SUPPORTED_FEATURE_FLAG_CAN_FD_STREAM_ONE_FRAME_PER_MESSAGE &
CommNodeSettings.dwSupportedFeatures)>0) break;
}

/* Copying the message to the transmit buffer TxData. */
bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend);

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 12-16

assert(bResult);

/** Sending the CAN FD Stream message.
 * iSocket - the socket descriptor. The socket should be already initialized and
 * ready for sending.
 *
 */
iBytesSent=send(iSocket, TxData, iBytesToSend,0);

If the TCP protocol is used, the TCP_NODELAY option should be set to the socket to avoid
delays in sending protocol messages.

4.3 Discovering the Converter

The converter can be discovered using the Ethernet to CAN Converter Discovery Protocol.
The user should do the following:
• Open a datagram socket with the SO_BROADCAST option.
• Prepare a discovery request and copy it to the transmitting buffer.
• Send the discovery request to the global IP address.
• Wait for the incoming discovery responses from converters located on the same LAN.
• Parse the responses first by PMParseFromBuffer() and then by DPParseResponse()

called from OnDataParsed() .

A simplified example code illustrating the concept is presented below:

BYTE_t TxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE];
BYTE_t RxData[PM_PROTOCOL_MESSAGE_BUFFER_SIZE];
PM_PROTOCOL_MESSAGE_t PMessage;
PM_PROTOCOL_PARSER_t PParser;
struct sockaddr_in SocketAddress;

BOOL_t bResult;
int iBytesToSend;
int iBytesSent;
int iBytesReceived;

/* Preparing the Discovery Request message. */
DPGenRequestMessage(&PMessage);
/* Copying the message to the transmit buffer TxData. */
bResult = PMCopyToBuffer(&PMessage, TxData, sizeof(TxData), &iBytesToSend);
assert(bResult);

/* Preparing the global socket address */
memset(&SocketAddress, 0, sizeof(SocketAddress));
SocketAddress.sin_family = AF_INET;
SocketAddress.sin_addr.s_addr = inet_addr("255.255.255.255");
SocketAddress.sin_port = htons(DP_DISCOVERY_PORT);

 /* Initializing the parser */
 memset(&PParser, 0, sizeof(PParser));

/* Sending the Discovery Request message to the global address.
 iSocket - the socket descriptor. The socket should be already initialized and
 ready for sending to the global address. */
iBytesSent = sendto(iSocket, TxData, iBytesToSend, 0, (struct sockaddr *) &SocketAddress,
 sizeof(SocketAddress));
if (iBytesSent != SOCKET_ERROR)
{
 /* Now we are waiting for the reply from the converter */

 iBytesReceived = recv(iSocket, RxData, sizeof(RxData), 0);
 if (iBytesReceived > 0)

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 13-16

 {
 /* Reply has been arrived. Parsing it. */
 PMParseFromBuffer(RxData, iBytesReceived, &PParser, OnDataParsed, NULL, NULL);
 }
}

/* This function is called after the protocol message has been successfully parsed. */
void OnDataParsed(PROTOCOL_MESSAGE_t *pPMessage, void *arg)
{
 DP_DISCOVERY_DATA DiscData;

 /* Parsing the Discovery Response Message. */
 if (DPParseResponse(pPMessage, &DiscData))
 {
 /* The Discovery Response Message has been successfully parsed.
 The converter information is in the DiscData structure.
 Add your code here to process this information. */

 }
}

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 14-16

5 DOCUMENTATION
The following documents describing the Axiomatic proprietary protocols used in the SSP are
available upon request:
• O. Bogush, "Ethernet to CAN Converter Communication Protocol. Document version: 5,"

Axiomatic Technologies Corporation, December 14, 2022.
• O. Bogush, "Ethernet to CAN Converter Discovery Protocol. Document version: 1A,"

Axiomatic Technologies Corporation, April 5, 2021.
• O. Bogush, " Ethernet to CAN Converter Health Status. Document version: 3," Axiomatic

Technologies Corporation, April 5, 2021.

For requesting the documents, please contact Axiomatic Technologies at:
sales@axiomatic.com

mailto:sales@axiomatic.com

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 15-16

6 LICENSE
The SSP software is distributed with a permissive 3-clause BSD License. The text of the
license is included in the software files.

UMAX140910. CAN-ENET Software Support Package. Version 3.1 Page: 16-16

7 VERSION HISTORY
User
Manual
Version

SSP
version Date Author Modifications

3.1 3.0.0 September
12, 2023

Kiril
Mojsov

• Performed Legacy Updates

3.0 3.0.0 December
14, 2022

Olek
Bogush

• Added support for CAN FD Stream.
• Deprecated support for CAN and Notification

Stream.
• Added Communication Node Settings to Status

Response and Heartbeat messages.
• Updated CommProtocol.c, CommProtocol.h, and

examples: CANReceive.c, CANSend.c,
Heartbeat.c, and StatusRequest.c.

• Updated Finnish office phone number on the
front page.

2.0 2.0.xx April 27,
2021

Olek
Bogush

• Added support for Axiomatic Wi-Fi to CAN
converters.

• Added Converter Type parameter in Heartbeat
and Status Response messages.

• Updated Documentation section.
• Updated CANReceive.c, Heartbeat.c and

StatusRequest.c examples together with
Windows.mk and Linux.mk make files.

1.0A 1.0.xx March 2,
2017

Olek
Bogush

• In SSP Contents added request to unblock the
distribution .zip file in Windows.

1.0 1.0.xx October
27, 2016

Olek
Bogush

• Initial release.

Copyright 2023

OUR PRODUCTS
AC/DC Power Supplies

Actuator Controls/Interfaces

Automotive Ethernet Interfaces

Battery Chargers

CAN Controls, Routers, Repeaters

CAN/WiFi, CAN/Bluetooth, Routers

Current/Voltage/PWM Converters

DC/DC Power Converters

Engine Temperature Scanners

Ethernet/CAN Converters,
Gateways, Switches

Fan Drive Controllers

Gateways, CAN/Modbus, RS-232

Gyroscopes, Inclinometers

Hydraulic Valve Controllers

Inclinometers, Triaxial

I/O Controls

LVDT Signal Converters

Machine Controls

Modbus, RS-422, RS-485 Controls

Motor Controls, Inverters

Power Supplies, DC/DC, AC/DC

PWM Signal Converters/Isolators

Resolver Signal Conditioners

Service Tools

Signal Conditioners, Converters

Strain Gauge CAN Controls

Surge Suppressors

OUR COMPANY

Axiomatic provides electronic machine control components to the off-highway,
commercial vehicle, electric vehicle, power generator set, material handling,
renewable energy and industrial OEM markets. We innovate with engineered
and off-the-shelf machine controls that add value for our customers.

QUALITY DESIGN AND MANUFACTURING
We have an ISO9001:2015 registered design/manufacturing facility in Canada.

WARRANTY, APPLICATION APPROVALS/LIMITATIONS
Axiomatic Technologies Corporation reserves the right to make corrections,
modifications, enhancements, improvements, and other changes to its products
and services at any time and to discontinue any product or service without
notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. Users
should satisfy themselves that the product is suitable for use in the intended
application. All our products carry a limited warranty against defects in material
and workmanship. Please refer to our Warranty, Application
Approvals/Limitations and Return Materials Process at
https://www.axiomatic.com/service/.

COMPLIANCE
Product compliance details can be found in the product literature and/or on
axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.

SAFE USE
All products should be serviced by Axiomatic. Do not open the product and
perform the service yourself.

 This product can expose you to chemicals which are known in the
State of California, USA to cause cancer and reproductive harm. For
more information go to www.P65Warnings.ca.gov.

SERVICE
All products to be returned to Axiomatic require a Return Materials
Authorization Number (RMA#) from sales@axiomatic.com. Please provide the
following information when requesting an RMA number:

• Serial number, part number
• Runtime hours, description of problem
• Wiring set up diagram, application and other comments as needed

DISPOSAL
Axiomatic products are electronic waste. Please follow your local environmental
waste and recycling laws, regulations and policies for safe disposal or recycling
of electronic waste.

CONTACTS
Axiomatic Technologies Corporation
1445 Courtneypark Drive E.
Mississauga, ON
CANADA L5T 2E3
TEL: +1 905 602 9270
FAX: +1 905 602 9279
www.axiomatic.com
sales@axiomatic.com

Axiomatic Technologies Oy
Höytämöntie 6
33880 Lempäälä
FINLAND
TEL: +358 103 375 750
www.axiomatic.com
salesfinland@axiomatic.com

https://www.axiomatic.com/service/
http://www.p65warnings.ca.gov./
mailto:sales@axiomatic.com
http://www.axiomatic.com/
mailto:sales@axiomatic.com
http://www.axiomatic.com/
mailto:salesfinland@axiomatic.com

	1 GENERAL INFORMATION
	2 SSP CONTENTS
	2.1 Source Files
	2.2 Examples

	3 DATA TYPES AND CODING STYLE
	4 USING SSP
	4.1 Receiving Messages from the Converter
	4.2 Sending Messages to the Converter
	4.3 Discovering the Converter

	5 DOCUMENTATION
	6 LICENSE
	7 VERSION HISTORY

