

USER MANUAL UMAX130540

ISOLATED DUAL CHANNEL UNIVERSAL SIGNAL CONVERTER WITH CAN, SAE J1939

USER MANUAL

P/N: AX130540

VERSION HISTORY

Version	Date	Author	Modification
1.0	Jan 18, 2018	Ilona Korpelainen	Initial Draft
1.0 A	Mar 16, 2018	Ilona Korpelainen	Dimensional Drawing updated
1.0A	May 30, 2018	Amanda Wilkins	Added quiescent current and response time Added NFC app details
1.0A	August 9, 2018	Amanda Wilkins	Updated Dimensional Drawing, added the Axiomatic EA version
2.01	October 19, 2018	Ilona Korpelainen	NFC chapter added
2.02	October 6, 2020	Ilona Korpelainen	Added information on auto baud rate version
3.00	October 19, 2020	Ilona Korpelainen	Updated to match firmware V3.00 (Auto baud rate)
3.01	July 27, 2023	Kiril Mojsov	Performed Legacy Updates

ACCRONYMS

ACK Positive Acknowledgement (from SAE J1939 standard)

BATT +/- Battery positive (a.k.a. Vps) or Battery Negative (a.k.a. GND)

DIN Digital Input used to measure active high or low signals

DM Diagnostic Message (from SAE J1939 standard)

DTC Diagnostic Trouble Code (from SAE J1939 standard)

EA Axiomatic Electronic Assistant (A Service Tool for Axiomatic ECUs)

ECU Electronic Control Unit (from SAE J1939 standard)

GND Ground reference (a.k.a. BATT-)

I/O Inputs and Outputs

MAP Memory Access Protocol

NAK Negative Acknowledgement (from SAE J1939 standard)

PDU1 A format for messages that are to be sent to a destination address, either specific or

global (from SAE J1939 standard)

PDU2 A format used to send information that has been labeled using the Group Extension

technique, and does not contain a destination address.

PGN Parameter Group Number (from SAE J1939 standard)

PropA Message that uses the Proprietary A PGN for peer-to-peer communication

PropB Message that uses a Proprietary B PGN for broadcast communication

PWM Pulse Width Modulation

RPM Rotations per Minute

SPN Suspect Parameter Number (from SAE J1939 standard)

TP Transport Protocol

UIN Universal input used to measure voltage, current, frequency or digital inputs

Vps Voltage Power Supply (a.k.a. BATT+)

%dc Percent Duty Cycle (Measured from a PWM input)

Note:

An Axiomatic Electronic Assistant KIT may be ordered as P/N: AX070502 or AX070506K

TABLE OF CONTENTS

1. OV	ERVIEW OF CONTROLLER	9
1.1.	Input Function Blocks	10
1.2.	Input filtering	13
1.3.	Universal Signal Output Function Blocks	14
1.4.	Diagnostic Function Blocks	17
1.5.	PID Control Function Block	20
1.6.	Lookup Table Function Block	23
1.7.	Programmable Logic Function Block	25
1.8.	Math Function Block	26
1.9.	DTC React	27
1.10.	CAN Transmit Message Function Block	27
1.10	0.1. CAN Transmit Message Setpoints	27
1.10	0.2. CAN Transmit Signal Setpoints	28
1.11.	CAN Receive Function Block	28
1.12.	Available Control Sources	29
1.13.	Inching Control Block	30
2. OV	ERVIEW OF J1939 FEATURES	32
2.1.	Introduction to Supported Messages	32
2.2.	NAME, Address and Identification Information	34
3. EC	U SETPOINTS ACCESSED WITH THE AXIOMATIC ELECTRONIC ASSISTANT	37
3.1.	Accessing the ECU Using the Axiomatic EA	37
3.2.	J1939 Network Parameters	37
3.3.	Universal Signal Input Setpoints	39
3.4.	Magnetic Input and Encoder Input Setpoints	39
3.5.	Universal Signal Output Setpoints	40
3.6.	Constant Data List	42
3.7.	PID Control	43
3.8.	Lookup Table	44
3.9.	Programmable Logic	46
3.10.	Math Function Block	48
3.11.	CAN Transmit Setpoints	50
3.12.	CAN Receive Setpoints	52
3.13.	DTC React	53
3.14.	Inching Control	54
3.15.	General Diagnostic Options Setpoints	55
3.16.	Diagnostic Block Setpoints	56
4. CO	NTROLLER PARAMETERS ACCESSED WITH E-WRITE NFC	59
4.1.	Controller Information	59
4.2.	Universal Input	60
4.3.	Encoder Input	61

4.4.	Magnetic Input	61
4.5.	Proportional Output	62
5. RE	FLASHING OVER CAN WITH THE AXIOMATIC EA BOOTLOADER	65
APPEN	DIX A - TECHNICAL SPECIFICATION	A-1
Dii	mensional Drawing	A-5
Та	ble 39 – Pin Out	A-5

Table 1 – Universal Input Sensor Type Options	10
Table 2 – Debounce Time Options	
Table 3 – Pullup/Pulldown Resistor Options	11
Table 4 – Active High/Low Options	
Table 5 – Digital Input Sensor Type versus Input State	12
Table 6 – Output Type Options for Universal Signal Output	14
Table 7 – Digital Response Options	15
Table 8 – Delay Polarity	15
Table 9 – Enable Response Options	16
Table 10 – Override Response Options	
Table 11 – Fault Response Options	
Table 12 – Lamp Set by Event in DM1 Options	19
Table 13 – FMI for Event Options	
Table 14 – Low Fault FMIs and corresponding High Fault FMIs	20
Table 15 – PID Response Options	20
Table 16 – X-Axis Type Options	23
Table 17 – PointN – Response Options	23
Table 18 – Table X – Condition Y, Operator Options	25
Table 19 – Table X – Conditions Logical Operator Options	
Table 20 – Math function X Operator Options	26
Table 21 – Available Control Sources and Numbers	30
Table 22 – Inching Control Logic	31
Table 23 – Inc Response and Dec Response Options	31
Table 24 – J1939 Network Setpoints	38
Table 25 – Universal Signal Input Setpoints	39
Table 26 – Universal Signal Input Setpoints	40
Table 27 – Universal Signal Input Setpoints	40
Table 28 – Universal Signal Output Setpoints	42
Table 29 – Programmable Logic Setpoints	44
Table 30 – Lookup Table Setpoints	
Table 31 – Programmable Logic Setpoints	48
Table 32 – Math Function Setpoints	
Table 33 – CAN Transmit Message Setpoints	52
Table 34 – CAN Receive Setpoints	53
Table 35 – DTC React Setpoints	54
Table 36 – Inching Control Setpoints	54
Table 37 – General Diagnostic Setpoints	56
Table 38 – Diagnostic Block Setpoints	58
Table 47 – Universal Input Parameters	61
Table 48 – Encoder Input Parameters	61
Table 49 – Magnetic Input Parameters	62
Table 50 – Proportional Output Parameters	64
Table 39 - Pin Out	A-5
Figure 1 – Hardware Functional Block Diagram	
Figure 2 – Double Minimum and Maximum Error Thresholds	
Figure 3 – Analog source to Digital input	
Figure 4 – General ECU Information	
Figure 5 – Screen Capture of J1939 Setpoints	
Figure 6 – Screen Capture of Universal Signal Input Setpoints	
Figure 7 – Screen Capture of Universal Signal Input Setpoints	
Figure 8 – Screen Capture of Universal Signal Input Setpoints	
Figure 9 – Screen Capture of Universal Signal Output Setpoints	
Figure 10 – Screen Capture of Constant Data List Setpoints	
Figure 11 – Screen Capture of PID Control Setpoints	44

Figure 12 – Screen Capture of Lookup table Setpoints	45
Figure 13 – Screen Capture of Programmable Logic Setpoints	47
Figure 14 – Screen Capture of Math Function Block Setpoints	49
Figure 15 – Screen Capture of CAN Transmit Message Setpoints	51
Figure 16 – Screen Capture of CAN Receive Message Setpoints	53
Figure 17 – Screen Capture of DTC React Setpoints	53
Figure 18 – Screen Capture of Inching Control Setpoints	54
Figure 19 – Screen Capture of General Diagnostic Options Setpoints	55
Figure 20 – Screen Capture of Diagnostic Block Setpoints	56
Figure 28 – Screen Capture of Controller Information Parameters	59
Figure 29 – Screen Capture of Universal Input Parameters	60
Figure 30 – Screen Capture of Encoder Input Parameters	61
Figure 31 – Screen Capture of Magnetic Input Parameters	62
Figure 32 – Screen Capture of Proportional Output Parameters	63

REFERENCES

J1939	Recommended Practice for a Serial Control and Communications Vehicle Network, SAE, April 2011
J1939/16	Automatic Baud Rate Detection Process, SAE, November 2018
J1939/21	Data Link Layer, SAE, December 2010
J1939/71	Vehicle Application Layer, SAE, March 2011
J1939/73	Application Layer-Diagnostics, SAE, February 2010
J1939/81	Network Management, SAE, May 2003
TDAX130540	Technical Datasheet, Axiomatic Technologies 2018
UMAX07050x	User Manual VX.XX.XX, Axiomatic Electronic Assistant and USB-CAN, Axiomatic Technologies, May 2021

This document assumes the reader is familiar with the SAE J1939 standard. Terminology from the standard is used, but not described in this document.

NOTE: This product is supported by Axiomatic Electronic Assistant V5.15.117.0 and higher

1. OVERVIEW OF CONTROLLER

The isolated dual channel universal signal converter (2In2Out) is designed for extremely versatile control of up to two signal level outputs. Its flexible circuit design gives the user a wide range of configurable input and output types. The sophisticated control algorithms allow the user to program the controller for a wide range of applications without the need for customer software.

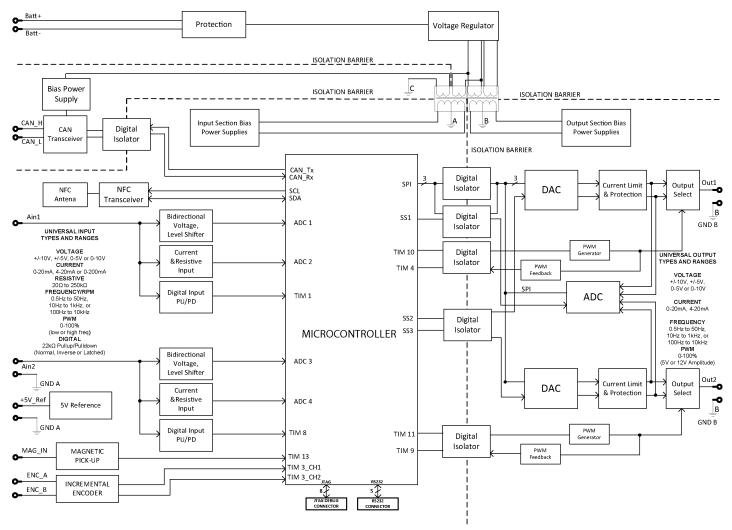


Figure 1 – Hardware Functional Block Diagram

The controller has two fully programmable universal signal inputs that can be setup to read: voltage, current, resistive, frequency or digital input signals. In addition, there is a magnetic input for reading magnetic pick up sensor and an encoder input.

The two universal signal outputs can be setup to output: voltage (0-5V, 0-10V, +/-5V or +/-10V), current (0-20mA or 4-20mA), PWM (fixed frequency), Frequency (fixed duty cycle), variable PWM and Freq, and Digital On/Off. All I/O ports on the unit are fully independent from another.

The controller has four-way digital isolation between inputs, outputs, power and CAN bus.

The Axiomatic Electronic Assistant is used to configure the isolated dual channel universal signal converter. Configurable properties, Axiomatic EA setpoints, are listed in chapter 3. Setpoint configuration can be saved in a file which can then be utilized to program the same configuration to another isolated dual channel universal signal converter. Throughout this document, Axiomatic EA setpoint names are referred to with bolded text in double-quotes, and the setpoint option is referred to with italicized text in single-quotes. For example, "Input Sensor Type" setpoint set to option 'Voltage 0 to 5V'.

In addition, to configuring the controller with the Axiomatic EA and a USB-CAN device, the reduced amount of setpoints are available as parameters to be configured through near field communication (NFC) by using the mobile E-Write NFC tool available on the Google Play Store. Controllers NFC feature and available parameters are described in chapter 4.

In this document the configurable properties of the ECU are divided into function blocks, namely Input Function Block, Output Function Block, Diagnostic Function Block, PID Control Function Block, Lookup Table Function Block, Programmable Logic Function Block, Math Function Block, DTC React Function Block, CAN Transmit Message Function Block, CAN Receive Message Function Block and Inching Control Block. These function blocks are presented in detail in next subchapters.

1.1. Input Function Blocks

The controller has two universal signal inputs (Input1 and Input2), which can be configured to measure voltage, current, resistance, frequency, pulse width (PWM) or digital signal. In addition, there is a Magnetic input (Input3) and an Encoder Input (Input4).

Universal Signal Input setpoint group has the "**Input Sensor Type**" setpoint, which is used to configure input type. Selecting input type effects on other setpoints and how they are interpreted and should thus be selected first on this block. The input sensor types are listed in Table 1.

0	Disabled
10	Voltage 0 to 5 V
11	Voltage 0 to 10V
12	Voltage -5 to 5 V
13	Voltage -10 to 10 V
20	Current 0 to 20 mA
21	Current 4 to 20 mA
22	Current 0 to 200 mA
30	Resistive 20 Ω to 250 $k\Omega$
40	Frequency 0.5 to 50 Hz
41	Frequency 10 Hz to 1 kHz
42	Frequency 100 Hz to 20 kHz
50	PWM Low Frequency (<1kHz)
51	PWM High Frequency (>100Hz)
60	Digital (normal)
61	Digital (inverse)
62	Digital (latched)

Table 1 - Universal Input Sensor Type Options

With Universal Inputs voltage (i.e. 0-5V, 0-10V, +/-5V, +/-10V) or current (0-20mA, 4-20mA, 0-200mA) sensor types the input signals go directly to a 12-bit analog-to-digital converter (ADC) on the processor. The voltage input is a high impedance input protected against shorts to GND or Vps. In current mode, a current sense resistor (249 Ω , for 0-20mA and 5 Ω for 0-200mA) is used to measure the input signal.

Resistive inputs can accurately read a resistive value connected between the input pin and INGND. The 2In2Out controller multiplexes a configurable current source (10uA, 100uA, 1mA, 10mA) to the input pin set up as resistive input, and measures voltage created across the input. Depending on the value of the resistive load, the input will self-calibrate to the appropriate sourcing current.

0	None
1	111ns
2	1.78us
3	14.22us

Table 2 – Debounce Time Options

Frequency/RPM or Pulse Width Modulated (PWM) "Input Sensor Type" options connect an input to 16-bit timer pin on the processor. "Debounce Time" setpoint is used to select an input capture filter for the timer pin in question. "Pulse Per Revolution" setpoint is only associated with the frequency input type. If the setpoint is configured to be different from 0, then the input data will be reported as in rotations-per-minute (RPM). Otherwise, frequency inputs are measured in Hertz.

Universal Inputs have available three Digital "**Input Sensor Type**" options: Normal, Inverse and Latched. With digital input sensor types, the input measurement is given, either 1 (ON) or 0 (OFF). The Universal Inputs measure digital voltage with 1.8.V ON threshold and 1.2V OFF threshold.

On Frequency, PWM and digital input modes $10k\Omega$ pull-up or pull-down resistors can be enabled or disabled by setting the value of the "**Pullup/Pulldown Resistor**" setpoint. Setpoint options are given in Table 3. By default, pull-down resistors are enabled for all inputs.

0	Pullup/down Off	
1	10 kΩ Pullup	
2	10 kΩ Pulldown	

Table 3 - Pullup/Pulldown Resistor Options

"Active High/Active Low" setpoint is used to configure how signal high and low are interpreted. Setpoint options are given in Table 4. By default, all inputs are selected to be Active High, which means that signal high is interpreted as 1(ON) and signal low as 0(OFF).

0	Active High
_	, , .e., .eg.,

1 Active Low

Table 4 - Active High/Low Options

Table 5 shows the effect of different digital input types on input signal measurement interpretation with recommended "Pullup/Pulldown Resistor" and "Active High/Low" combinations.

Input Sensor Type		Pulldown Active High	Pullup Active Low	Input measured (state)
6	Digital (parmal)	High	Low or Open	1 (ON)
0	Digital (normal)	Low or Open	High	0 (OFF)
61	Digital (inverse)	High or Open	Low	1 (ON)
61	Digital (inverse)	Low	High or Open	0 (OFF)
62	Digital (latched)	High to Low	Low to High	0 (no change)
02		Low to High	High to Low	1 (state change)

Table 5 – Digital Input Sensor Type versus Input State

The "Minimum Range" and "Maximum Range" setpoints are used to define range of the signal input outputs as a control source. For example, if "Maximum Range" is set to 4V for an input, the control signal is saturated at 4V if input signal rises above 4V. The "Minimum Range" and "Maximum Range" setpoints are interpreted in input types units, thus they should be re-adjusted after editing "Input Sensor Type".

Software filters can be applied to the measured input signal. Setpoints "**Software Filter Type**" and "**Software Filter Constant**" are used to configure the software filter. By default, no filter is applied to the signal. Software filtering is described in detail in section below.

The rest of the setpoints in the Input setpoint group are used to configure input related fault diagnostics and are described in section 1.4.

1.2. Input filtering

Measured input data from universal inputs can be filtered to form desired CAN message data. Input filters are configured with "Filter Type" and "Filter Constant" setpoints. Filters are configured for each input individually.

"Filter Type" setpoint defines the type of software filter used. Setpoint options are 'No Filtering', 'Moving Average' and 'Repeating Average'. The 'No Filtering' option applies no filtering to the measured input data. The 'Moving Average option applies the transfer function below to the measured input data, where Value_N is the current value of the CAN message data, Value_{N-1} is the previous CAN message data and Filter Constant is the value of the "Filter Constant setpoint".

Equation 1 - Moving Average Transfer Function:

$$Value_N = Value_{N-1} + \frac{(Input-Value_{N-1})}{Filter Constant}$$

Equation 2 - Repeating Average Transfer Function:

$$Value = \frac{\sum_{0}^{N} Input_{N}}{N}$$

The 'Repeating Average' option applies the transfer function above to the measured input data, where N is value of the "Filter Constant" setpoint. At every reading of the input value, the value is added to the sum. At every Nth read, the sum is divided by N, and the result is new CAN message data. The sum is set to zero for the next read and summing is started again.

1.3. Universal Signal Output Function Blocks

The controller has two fully isolated signal outputs. "**Output Type**" setpoint determines what kind of signal the output produces. Changing this setpoint causes other setpoints in the group to update to match selected type, thus the "**Output Type**" should be selected before configuring other setpoints within the setpoint group. "**Output Type**" setpoint options are listed in Table 6.

0	Disabled
12	Voltage 0 to 5V
13	Voltage 0 to 10V
14	Voltage -5 to 5V
15	Voltage -10 to 10V
20	Current 0 to 20mA
21	Current 4 to 20mA
40	Frequency 0 to 20kHz
50	PWM
60	Digital On/Off
70	Mixed PWM and Frequency

Table 6 – Output Type Options for Universal Signal Output

Voltage and current outputs are generated with fully isolated onboard digital to analog converters (DAC). Frequency, PWM, Digital and Mixed outputs are produced with controller's timer outputs. Signal amplitude can be selected to be either 5V of 12V with "Frequency/PWM Amplitude" setpoint.

Output signal minimum and maximum values are configured with "Output At Minimum Command" and "Output At Maximum Command" setpoints. Value ranges for both setpoints are limited by selected "Output Type".

With linear output types (all output types except 'Digital On/Off'), regardless of what type of control input is selected, the output will always respond in a linear fashion to changes in the input per Equation 3.

$$y = mx + a$$

$$m = \frac{Ymax - Ymin}{Xmax - Xmin}$$

$$a = Ymin - m * Xmin$$

Equation 3 - Linear Slope Calculations

In the case of the Output Control Logic function block, X and Y are defined as

Xmin = Control Input Minimum Ymin = "Output at Minimum Command"

Xmax = Control Input Maximum Ymax = "Output at Maximum Command"

In all cases, while X-axis has the constraint that Xmin < Xmax, there is no such limitation on the Y-axis. Thus configuring "Output At Minimum Command" to be greater than "Output At Maximum Command" allows output to follow control signal inversely.

To prevent abrupt changes at the output due to sudden changes in the command input, the user can choose to use the independent up or down ramps to smooth out the response. The "**Ramp Up**" and "**Ramp Down**" setpoints are in milliseconds, and the step size of the output change will be determined by taking the absolute value of the output range and dividing it by the ramp time.

"Fixed Output Frequency/PWM Duty Cycle" setpoint is used to select output signal duty cycle with 'Frequency 0 to 20kHz' output type and frequency with 'PWM' output type. The value of this setpoint defaults when "Output Type" setpoint is changed.

With the 'Digital On/Off' output type, in OFF state output is 0V and in ON state 5V or 12V depending on selected amplitude. The 'Digital On/Off' output type has several associated setpoints. The "Digital Response" setpoint is used to select digital response, setpoint options are listed in Table 7.

0	Normal On/Off
1	Inverse Logic
2	Latched Logic
3	Blinking Logic

Table 7 – Digital Response Options

In a 'Normal' response, when the Control input commands the output ON, then the output will be turned ON. However, in an 'Inverse' response, the output will be ON unless the input commands the output ON, in which case it turns OFF.

The "Digital Out Delay" and "Delay Polarity" setpoints are associated with 'Normal' "Digital Response". The "Digital Out Delay" defines output state change delay in milliseconds. Setting "Digital Out Delay" to 0ms applies no state change delay. The "Delay Polarity" setpoint defines which edge the state change delay will be applied. For example, selecting 'Rising Edge' for "Delay Polarity" and setting "Digital Out Delay" value >0ms, applies defined delay when driving output signal state changes form OFF to ON.

0	Rising Edge
1	Falling Edge

Table 8 - Delay Polarity

If a 'Latched' response is selected, the output will change state, when the input commands the state from OFF to ON.

If a 'Blinking' response is selected, the output will blink at the rate of the "Digital Blink Rate" setpoint while the input commands the output ON. When commanded OFF, the output will stay off.

The "Control Source" setpoint together with "Control Number" setpoint determine which signal is used to drive the output. For example, setting "Control Source" to 'Universal Input Measured' and "Control Number" to '1', connects signal measured from Universal Input1 to the output in question. The input signal is scaled per input type range between 0 and 1 to form control signal. Outputs respond in a linear fashion to changes in control signal. If a non-digital signal is selected to

drive digital output the command state will be 0 (OFF) at or below the "Output At Minimum Command", 1 (ON) at or above "Output At Maximum Command" and will not change in between those points.

The 'Mixed PWM and Frequency' output type has second control input which is selected with "Frequency Control Source" and "Frequency Control Number" setpoints. Associated "Mixed Output Frequency Min" and "Mixed Output Frequency Max" setpoints determine minimum and maximum values for the frequency control signal.

In addition to the Control input, outputs also support Enable and Override inputs.

The "Enable Source" setpoint together with "Enable Number" setpoint determine the enable signal for the output in question. The "Enable Response" setpoint is used to select how output will respond to the selected Enable signal. "Enable Response" setpoint options for the proportional output are listed in Table 9. If "Enable Source" is set to 'Control not used', the Enable signal is interpreted to be ON. If a non-digital signal is selected as Enable signal the signal is interpreted as shown in Figure 3.

0	Enable When On, Else Shutoff
1	Enable When On, Else Ramp off
2	Enable When Off, Else Shutoff
3	Enable When Off, Else Ramp off
4	Enable When On, Else Ramp To Min
5	Enable When On, Else Ramp To Max

Table 9 – Enable Response Options

Override input allows the output drive to be configured to go to a default value in the case of the override input being engaged/disengaged, depending on the logic selected in "Override Response", presented on Table 10. When active, the output will be driven to the value in "Output at Override Command" regardless of the value of the Control input. The "Override Source" and "Override Number" together determine the Override input signal.

	0	Override When On
Ī	1	Override When Off

Table 10 – Override Response Options

If a fault is detected in any of the active inputs (Control/Enable/Override) the output will respond per "Control Fault Response" setpoint as outlined in Table 11. Fault Value is defined by "Output in Fault Mode" setpoint value, which is interpreted in selected output units.

0	Shutoff Output
1	Apply Fault Value
2	Hold Last Value

Table 11 – Fault Response Options

It is also possible to set ALL outputs to be turned off in case of power supply, controller temperature or CAN bus fault as described in section 1.4.

Actual output value is measured internally from output feedback connection. With voltage and current output type, fully isolated onboard analog to digital converter (ADC) is utilized to measure the feedback signal. With frequency, PWM and mixed output types, 16-bit processor timer pin measures the output signal. Output feedback value is available as control source as shown in section 1.12. and can thus be used in fault detection presented in section 1.4.

1.4. Diagnostic Function Blocks

The 2In2Out controller supports diagnostic messaging. DM1 message is a message, containing Active Diagnostic Trouble Codes (DTC) that is sent to the J1939 network in case a fault has been detected. A Diagnostic Trouble Code is defined by the J1939 standard as a four-byte value which is a combination of:

SPN Suspect Parameter Number (user defined)

FMI Failure Mode Identifier (see Table 13 and Table 14)

CM Conversion Method (always set to 0)

OC Occurrence Count (number of times the fault has happened)

In addition to supporting the DM1 message, 2In2Out Input also supports:

DM2	Previously Active Diagnostic Trouble Codes	Sent only on request
DM3	Diagnostic Data Clear/Reset of Previously Active DTCs	Done only on request
DM11	Diagnostic Data Clear/Reset for Active DTCs	Done only on request

Fault detection and reaction is a standalone functionality that can be configured to monitor and report diagnostics of various controller parameters. The 2In2Out controller supports 16 Diagnostics Definitions, each freely configurable by the user.

By default, the monitoring of operating voltage, CPU temperature and receive message timeouts is configured to diagnostics blocks 1, 2 and 3., In case any of these three diagnostics blocks are needed for some other use, the default settings can be adjusted by the user to suit the application.

There are 4 fault types that can be used, "Minimum and maximum error", "Absolute value error", "State error" and "Double minimum and maximum error".

Minimum and maximum error has two thresholds, "MIN Shutdown" and "MAX Shutdown" that have configurable, independent diagnostics parameters (SPN, FMI, Generate DTCs, delay before flagging status). In case the parameter to monitor stays between these two thresholds, the diagnostic is not flagged.

Absolute value error has one configurable threshold with configurable parameters. In case the parameter to monitor stays below this threshold, the diagnostic is not flagged.

State error is like the Absolute value error, the only difference is that State error does not allow the user to specify specific threshold values; thresholds '1' and '0' are used instead. This is ideal for monitoring state information, such as received message timeouts.

Double minimum and maximum error lets user to specify four thresholds, each with independent diagnostic parameters. The diagnostic status and threshold values is determined and expected as show in Figure 2 below.

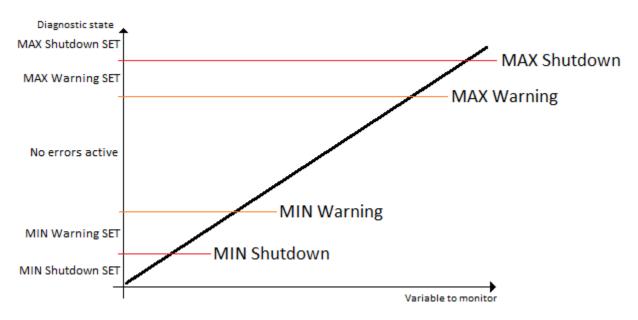


Figure 2 – Double Minimum and Maximum Error Thresholds

In case any of the Diagnostics blocks is configured to monitor Output Feedback, there is an internal error status flag maintained automatically for that output. This internal flag can be used for driving the output to a specified state in case of diagnostic event using Signal Output setpoints "Output Fault Response", "Output in Fault Mode" and "Fault Detection Enabled".

There is also built in error status flags for power supply and CPU temperature monitoring. In case any of the diagnostics blocks is measuring these two parameters, the corresponding internal error status flags can be used for shutting down the unit in case of failure. The setpoints "Power Fault Disables Outputs" and "Over Temperature Shutdown" can be used for enabling the shutdown of the unit (shutdown == output driving is turned off).

While there are no active DTCs, the 2In2Out controller will send "No Active Faults" message. If a previously inactive DTC becomes active, a DM1 will be sent immediately to reflect this. As soon as the last active DTC goes inactive, a DM1 indicating that there are no more active DTCs will be sent.

If there is more than one active DTC at any given time, the regular DM1 message will be sent using a multipacket message to the Requester Address using the Transport Protocol (TP).

At power up, the DM1 message will not be broadcasted until after 5 second delay. This is done to prevent any power up or initialization conditions from being flagged as an active error on the network.

When the fault is linked to a DTC, a non-volatile log of the occurrence count (OC) is kept. As soon as the controller detects a new (previously inactive) fault, it will start decrementing the "**Delay**

before Event is flagged" timer for that Diagnostic function block. If the fault has remained present during the delay time, then the controller will set the DTC to active, and will increment the OC in the log. A DM1 will immediately be generated that includes the new DTC. The timer is provided so that intermittent faults do not overwhelm the network as the fault comes and goes, since a DM1 message would be sent every time the fault shows up or goes away.

By default, the fault flag is cleared when error condition that has caused it goes away. The DTC is made Previously Active and is it is no longer included in the DM1 message. To identify a fault having happened, even if the condition that has caused is one away, the "**Event Cleared only by DM11**" setpoint can be set to '*True*'. This configuration enables DTC to stay Active, even after the fault flag has been cleared, and be included in DM1 message until a Diagnostic Data Clear/Reset for Active DTCs (DM11) has been requested.

As defined by J1939 Standard the first byte of the DM1 message reflects the Lamp status. "Lamp Set by Event" setpoint determines the lamp type set in this byte of DTC. "Lamp Set by Event" setpoint options are listed in Table 12. By default, the 'Amber, Warning' lamp is typically the one set be any active fault.

0	Protect
1	Amber Warning
2	Red Stop
3	Malfunction

Table 12 – Lamp Set by Event in DM1 Options

"SPN for Event" defines suspect parameter number used as part of DTC. The default value zero is not allowed by the standard, thus no DM will be sent unless "SPN for Event" in is configured to be different from zero. It is user's responsibility to select SPN that will not violate J1939 standard. When the "SPN for Event" is changed, the OC of the associated error log is automatically reset to zero.

0	Data Valid But Above Normal Operational Range - Most Severe Level
1	Data Valid But Below Normal Operational Range - Most Severe Level
2	Data Intermittent
3	Voltage Above Normal, Or Shorted To High Source
4	Voltage Below Normal, Or Shorted To Low Source
5	Current Below Normal Or Open Circuit
6	Current Above Normal Or Grounded Circuit
7	Mechanical Error
8	Abnormal Frequency Or Pulse Width Or Period
9	Abnormal Update Rate
10	Abnormal Rate Of Change
11	Root Cause Not Known
12	Bad Component
13	Out Of Calibration
14	Special Instructions
15	Data Valid But Above Normal Operating Range – Least Severe Level
16	Data Valid But Above Normal Operating Range – Moderately Severe Level
17	Data Valid But Below Normal Operating Range – Least Severe Level

18	Data Valid But Below Normal Operating Range – Moderately Severe Level
19	Network Error
20	Data Drifted High
21	Data Drifted Low
31	Condition Exists

Table 13 - FMI for Event Options

Every fault has associated a default FMI with them. The used FMI can be configured with "FMI for Event" setpoint, presented in Table 13. When an FMI is selected from Low Fault FMIs in Table 14 for a fault that can be flagged either high or low occurrence, it is recommended that the user would select the high occurrence FMI from the right column of Table 14. There is no automatic setting of High and Low FMIs in the firmware, the user can configure these freely.

Low Fault FMIs	High Fault FMIs
FMI=1, Data Valid But Below Normal Operation	FMI=0, Data Valid But Above Normal
Range – Most Severe Level	Operational Range – Most Severe Level
FMI=4, Voltage Below Normal, Or Shorted to	FMI=3, Voltage Above Normal, Or Shorted To
Low Source	High Source
FMI=5, Current Below Normal Or Open Circuit	FMI=6, Current Above Normal Or Grounded
	Circuit
FMI=17, Data Valid But Below Normal	FMI=15, Data Valid But Above Normal
Operating Range – Least Severe Level	Operating Range – Least Severe Level
FMI=18, Data Valid But Below Normal	FMI=16, Data Valid But Above Normal
Operating Level – Moderately Severe Level	Operating Range – Moderately Severe Level
FMI=21, Data Drifted Low	FMI=20, Data Drifted High

Table 14 – Low Fault FMIs and corresponding High Fault FMIs

1.5. PID Control Function Block

The PID Control function block is an independent logic block, but it is normally intended to be associated with proportional output control blocks described earlier. When the "Control Source" for an output has been setup as a 'PID Function Block', the command from the selected PID block drives the physical output on the 2In2Out Controller.

The "PID Target Command Source" and "PID Target Command Number" setpoints determine control input and the "PID Feedback Input Source" and "PID Feedback Input Number" setpoints determine the established the feedback signal to the PID function block. The "PID Response Profile" will use the selected inputs as per the options listed in Table 15. When active, the PID algorithm will be called every "PID Loop Update Rate" in milliseconds.

0	Single Output
1	Setpoint Control
2	On When Over Target
3	On When Below Target

Table 15 - PID Response Options

When a 'Single Output' response is selected, the Target and Feedback inputs do not have to share the same units. In both cases, the signals are converted to a percentage values based on the minimum and maximum values associated with the source function block.

For example, a CAN command could be used to set the target value, in which case it would be converted to a percentage value using "Receive Data Min" and "Receive Data Max" setpoints in the appropriate 'CAN Receive X' function block. The closed-loop feedback signal (i.e. a 0-5V input) could be connected to 'Universal Input 1' and selected as the feedback source. In this case the value of the input would be converted to a percentage based on the "Minimum Range" and "Maximum Range" setpoints in the input block. The output of the PID function would depend on the difference between the commanded target and the measured feedback as a percentage of each signals range. In this mode, the output of the block would be a value from -100% to 100%.

When a 'Setpoint Control' response is selected, the "PID Target Command Source" automatically gets updated to 'Control Constant Data' and cannot be changed. The value set in the associated constant in the Constant Data List function block becomes the desired target value. In this case, both the target and the feedback values are assumed to be in same units and range. The minimum and maximum values for the feedback automatically become the constraints on the constant target. In this mode, the output of the block would be a value from 0% to 100%.

For example, if the feedback was setup as a 4-20mA input, a "Constant Value X" setpoint set to 14.2 would automatically be converted to 63.75%. The PID function would adjust the output as needed to have the measured feedback to maintain that target value.

The last two response options, 'On When Over Target' and 'On When Under Target', are designed to allow the user to combine the two proportional outputs as a push-pull drive for a system. Both outputs must be setup to use the same control input (linear response) and feedback signal in order to get the expected output response. In this mode, the output would be between 0% to 100%.

In Order to allow the output to stabilize, the user can select a non-zero value for "**PID Delta Tolerance**". If the absolute value of $Error_K$ is less than this value, $Error_K$ in the formula below will be set to zero.

The PID algorithm used is shown below, where G, Ki, Ti, Kd, Td and Loop_Update_Rate are configurable parameters.

$$PIDOutput_k = P_k + I_k + D_k$$
 $P_k = P_Gain * Error_k$
 $I_k = I_Gain * ErrorSum_k$
 $D_k = D_Gain * (Error_k - Error_{k-1})$
 $Error_k = Target - Feedback$
 $ErrorSum_k = ErrorSum_{k-1} + Error_k$
 $P_Gain = G$
 $I_Gain = G * Ki * T/Ti$ (Note: If Ti is zero, I_Gain = 0)

$$D_Gain = G * Kd * Td/T$$

$$T = Loop_Update_Rate * 0.001$$

Equation 4 – PID Control Algorithm

Each system will have to be turned for the optimum output response. Response times, overshoots and other variables will have to be decided by the customer using an appropriate PID tuning strategy. Axiomatic is not responsible for tuning the control system.

1.6. Lookup Table Function Block

Lookup Tables are used to give output response up to 10 slopes per input. If more than 10 slopes are required, A Programmable Logic Block can be used to combine up to three tables to get 30 slopes as described in Section 1.7.

Lookup tables have three differing modes defined by "X-Axis Type" setpoint, given in Table 16. Option '0 – Data Response' is the normal mode where block input signal is selected with the "X-Axis Source" and "X-Axis Number" setpoints and X values present directly input signal values. With option '1 – Time Response' the input signal is time and X values present time in milliseconds. And selected input signal is used as digital enable. Option '2 – Enabled Data Response' works like the Data Response option with a configurable threshold for the input signal to enable and disable the output. The output value in 'disabled' mode can be defined by the user with "Output value when disabled" setpoint.

The Enabled Data Response X-Axis type is targeted for joystick applications, where it is needed to disable the output drive when joystick position exceeds a certain threshold and can be enabled only when the joystick is returned to neutral position.

0	Data Response
1	Time Response
2	Enabled Data Response

Table 16 – X-Axis Type Options

The slopes are defined with (x, y) points and associated point response. X value presents input signal value and Y value corresponding Lookup Table output value. "PointN – Response" setpoint defines type of the slope from preceding point to the point in question. Response options are given in Table 17. 'Ramp To' gives a linearized slope between points, whereas 'Jump to' gives a point to point response, where any input value between X_{N-1} and X_N will result Lookup Table output being Y_N . "Point0 – Response" is always 'Jump To' and cannot be edited. Choosing 'Ignored' response causes associated point and all the following points to be ignored.

0	Ignore
1	Ramp To
2	Jump To

Table 17 - PointN - Response Options

In case Time Response is used, the "**Autocycle**" setpoint can be used for generating a repeating, cyclic output while the selected control source enables the time response output of the particular lookup table.

The X values are limited by minimum and maximum range of the selected input source if the source is one of the Input Blocks or a Math Function Block. For the fore mentioned sources X-Axis data will be redefined when ranges are changed, therefore inputs should be adjusted before changing X-Axis values. For other sources Xmin and Xmax are 0 and 10,000. The X-Axis is constraint to be in rising order, thus value of the next index is greater than or equal to preceding

one. Therefore, when adjusting the X-Axis data, it is recommended that X_{10} is changed first, then lower indexes in descending order.

$$Xmin \le X_0 \le X_1 \le X_2 \le X_3 \le X_4 \le X_5 \le X_6 \le X_7 \le X_8 \le X_9 \le X_{10} \le Xmax$$

The Y-Axis has no constraints on the data it presents, thus inverse, decreasing, increasing or other response can be easily established. The Smallest of the Y-Axis values is used as Lookup Table output min and the largest of the Y-Axis values is used as Lookup Table output max (i.e. used as Xmin and Xmax values in linear calculation, Section 1.3). Ignored points are not considered for min and max values.

1.7. Programmable Logic Function Block

The Programmable Logic Function Block is very powerful tool. A Programmable Logic can be linked to up to three Lookup Tables, any of which would be selected only under given conditions. Thus, output of a Programmable Logic at any given time will be the output of the Lookup Table selected by defined logic. Therefore, up to three different responses to the same input, or three different responses to different inputs, can become the input to another function block.

To enable any one of the Programmable Logic blocks, the "**Programmable Logic Enabled**" setpoint must be set to '*True*'. By default, all Logic blocks are disabled.

The three associated tables are selected by setting "**Table X – Lookup Table Block Number**" setpoint to desired Lookup Table number, for example selecting 1 would set Lookup Table 1 as TableX.

For each TableX there are three conditions that define the logic to select the associated Lookup Table as Logic output. Each condition implements function *Argument1 Operator Argument2* where Operator is logical operator defined by setpoint "Table X – Condition Y, Operator". Setpoint options are listed in Table 18. Condition arguments are selected with "Table x – Condition Y, Argument Z Source" and "Table x – Condition Y, Argument Z Number" setpoints. If '0 – Control not Used' option is selected as "Table x – Condition Y, Argument Z Source" the argument is interpreted as 0.

0	=, Equal
1	!=, Not Equal
2	>, Greater Than
3	>=, Greater Than or Equal
4	<, Less Than
5	<=, Less Than or Equal

Table 18 – Table X – Condition Y, Operator Options

The three conditions are evaluated and if the result satisfies logical operation defined with "**Table X** – **Conditions Logical Operator**" setpoint, given in Table 19, the associated Lookup Table is selected as output of the Logical block. Option '*0* – *Default Table*' selects associated Lookup Table in all conditions.

0	Default Table (Table1)
1	Cnd1 And Cnd2 And Cnd3
2	Cnd1 Or Cnd2 Or Cnd3
3	(Cnd1 And Cnd2) Or Cnd3
4	(Cnd1 Or Cnd2) And Cnd3

Table 19 – Table X – Conditions Logical Operator Options

The three logical operations are evaluated in order and the first to satisfy gets selected, thus if Table1 logical operation is satisfied, the Lookup Table associated with Table1 gets selected regardless of two other logical operations. In addition, if none of the logical operations is satisfied the Lookup Table associated with Table1 gets selected.

1.8. Math Function Block

There are four mathematical function blocks that allow the user to define basic algorithms. A math function block can take up to five input signals. Each input is then scaled according to the associated limit and scaling setpoints.

Inputs are converted into percentage value based on the "Function X Input Y Minimum" and "Function X Input Y Maximum" values selected. For additional control the user can also adjust the "Function X Input Y Scaler". By default, each input has a scaling 'weight' of 1.0 However, each input can be scaled from -1.0 to 1.0 as necessary before it is applied in the function.

For example, in the case where the user may want to combine two inputs such that a joystick (Input 1) is the primary control of an output, but the speed can be incremented or decremented based on a potentiometer (Input 2), it may be desired that 75% of the scale is controlled by the joystick position, while the potentiometer can increase or decrease the min/max output by up to 25%. In this case, Input 1 would be scaled with 0.75, while Input 2 uses 0.25. The resulting addition will give a command from 0 to 100% based on the combined positions of both inputs.

A mathematical function block includes four selectable functions, which each implements equation A operator B, where A and B are function inputs and operator is function selected with setpoint "Math function X Operator". Setpoint options are presented in Table 20. The functions are connected, so that result of the preceding function goes into Input A of the next function. Thus Function 1 has both Input A and Input B selectable with setpoints, where Functions 2 to 4 have only Input B selectable. Input is selected by setting "Function X Input Y Source" and "Function X Input Y Number". If "Function X Input B Source" is set to 0 'Control not used' signal goes through function unchanged.

Math Block Output = (((A1 op1 B1)op2 B2)op3 B3)op4 B4

0	=, True when InA equals InB
1	!=, True when InA not equal InB
2	>, True when InA greater than InB
3	>=, True when InA greater than or equal InB
4	<, True when InA less than InB
5	<=, True when InA less than or equal InB
6	OR, True when InA or InB is True
7	AND, True when InA and InB are True
8	XOR, True when either InA or InB is True, but not both
9	+, Result = InA plus InB
10	-, Result = InA minus InB
11	x, Result = InA times InB
12	/, Result = InA divided by InB
13	MIN, Result = Smallest of InA and InB
14	MAX, Result = Largest of InA and InB

Table 20 – Math function X Operator Options

For logic operations (6, 7, 8) scaled input greater or equal to 1 is treated as TRUE. For logic operations (0 to 8), the result of the function will always be 0 (FALSE) of 1 (TRUE). For the

arithmetic functions (9 to 14), it is recommended to scale the data such that the resulting operation will not exceed full scale (0 to 100%) and saturate the output result.

When dividing, a zero divider will always result in a 100% output value for the associated function.

Lastly the resulting mathematical calculation, presented as a percentage value, can be scaled into the appropriate physical units using the "Math Output Minimum Range" and "Math Output Maximum Range" setpoints. These values are also used as the limits when the Math Function I selected as the input source for another function block.

1.9. DTC React

The DTC React function block is a very simple function which will allow a received DTC, sent from another ECU on a DM1 message, to disable an output or be used as input to another type of logic block. Up to five SPN/FMI combinations can be selected.

Should a DM1 message be received with the SPN/FMI combination defined, the corresponding DTC State will be set to ON. Once ON, if the same SPN/FMI combination has not been received again after 3 seconds, the DTC State will be reset to OFF.

The DTC could be used as a digital input for any function block as appropriate.

1.10. CAN Transmit Message Function Block

The CAN Transmit function block is used to send any output from another function block (i.e. input, CAN receive) to the J1939 network. The 2In2Out Controller has eight CAN Transmit Messages and each message has four completely user defined signals.

1.10.1. CAN Transmit Message Setpoints

Each CAN Transmit Message setpoint group includes setpoints that effect the whole message and are thus mutual for all signals of the message. These setpoints are presented in this section. The setpoints that configure an individual signal are presented in next section.

The "Transmit PGN" setpoint sets PGN used with the message. User should be familiar with the SAE J1939 standard, and select values for PGN/SPN combinations as appropriate from section J1939/71.

"Repetition Rate" setpoint defines the interval used to send the message to the J1939 network. If the "Repetition Rate" is set to zero, the message is disabled unless it shares its PGN with another message. In case of a shared PGN repetition rate of the LOWEST numbered message are used to send the message 'bundle'.

At power up, transmitted message will not be broadcasted until after a 5 second delay. This is done to prevent any power up or initialization conditions from creating problems on the network.

By default, all messages are sent on Proprietary B PGNs as broadcast messages. Thus "**Transmit Message Priority**" is always initialized to 6 (low priority) and the "**Destination Address**" setpoint is not used. This setpoint is only valid when a PDU1 PGN has been selected, and it can be set either to the Global Address (0xFF) for broadcasts, or sent to a specific address as setup by the user.

1.10.2. CAN Transmit Signal Setpoints

Each CAN transmit message has four associated signals, which define data inside the Transmit message. "Control Source" setpoint together with "Control Number" setpoint define the signal source of the message. "Control Source" and "Control Number" options are listed in Table 21. Setting "Control Source" to 'Control Not Used' disables the signal.

"Transmit Data Size" setpoint determines how many bits signal reserves from the message. "Transmit Data Index in Array" determines in which of 8 bytes of the CAN message LSB of the signal is located. Similarly, "Transmit Bit Index in Byte" determines in which of 8 bits of a byte the LSB is located. These setpoints are freely configurable, thus it is the User's responsibility to ensure that signals do not overlap and mask each other.

"Transmit Data Resolution" setpoint determines the scaling done on the signal data before it is sent to the bus. "Transmit Data Offset" setpoint determines the value that is subtracted from the signal data before it is scaled. Offset and Resolution are interpreted in units of the selected source signal.

1.11. CAN Receive Function Block

The CAN Receive function block is designed to take any SPN from the J1939 network, and use it as an input to another function block (i.e. Outputs).

The "Receive Message Enabled" is the most important setpoint associated with this function block and it should be selected first. Changing it will result in other setpoints being enabled/disabled as appropriate. By default, ALL receive messages are disabled.

Once a message has been enabled, a Lost Communication fault will be flagged if that message is not received off the bud within the "**Receive Message Timeout**" period. This could trigger a Lost Communication event as described in section 1.4. To avoid timeouts on a heavily saturated network, it is recommended to set the period at least three times longer than the expected update rate. To disable the timeout feature, simply set this value to zero, in which case the received message will never trigger a Lost Communication fault.

By default, all control messages are expected to be sent to the 2 Input 2 Output Controller on Proprietary B PGNs. However, should a PDU1 message be selected, the 2 Input 2 Output Controller can be setup to receive it from any ECU by setting the "**Specific Address that sends the PGN**" to the Global Address (0xFF). If a specific address is selected instead, then any other ECU data on the PGN will be ignored.

The "Receive Data Size", "Receive Data Index in Array (LSB)", "Receive Bit Index in Byte (LSB)", "Receive Resolution" and "Receive Offset" can all be used to map any SPN supported by the J1939 standard to the output data of the Received function block.

As mentioned earlier, a CAN receive function clock can be selected as the source of the control input for the output function blocks. When this is case, the "Received Data Min (Off Threshold)" and "Received Data Max (On Threshold)" setpoints determine the minimum and maximum values of the control signal. As the names imply, they are also used as the On/Off thresholds for digital output types. These values are in whatever units the data is AFTER the resolution and offset is applied to CAN receive signal.

The 2 Input 2 Output Controller I/O supports up to five unique CAN Receive Messages. Defaults setpoint values are listed in section 3.12.

1.12. Available Control Sources

Many of the Function Blocks have selectable input signals, which are determined with "[Name] Source" and "[Name] Number" setpoints. Together, these setpoints uniquely select how the I/O of the various function blocks are linked together. "[Name] Source" setpoint determines the type of the source and "[Name] Number" selects the actual source if there is more than one of the same type. Available "[Name] Source" options and associated "[Name] Number" ranges are listed in Table 21. All sources, except "CAN message reception timeout", are available for all blocks, including output control blocks and CAN Transmit messages. Thought input Sources are freely selectable, not all options would make sense for any input, and it is up to the user to program the controller in a logical and functional manner.

Sources	Number Range	Notes		
0: Control Not Used	N/A	When this is selected, it disables all other		
		setpoints associated with the signal in question.		
1: Received CAN Message	1 to 8	User must enable the function block, as it is		
		disabled by default.		
2: Input Measured	1 to 4	1 – Universal Signal Input1		
		2 – Universal Signal Input2		
		3 – Magnetic Input (Input3)		
		4 – Encoder Input (Input4)		
3: PID Function Block	1 to 2	User must enable the function block, as it is		
		disabled by default.		
4: Lookup Table	1 to 8	User must enable the function block, as it is		
		disabled by default.		
5: Programmable Logic	1 to 4	User must enable the function block, as it is		
Block		disabled by default.		
6: Math Function Block	1 to 4	User must enable the function block, as it is		
		disabled by default.		
7: Control Constant Data	1 to 15	1 = FALSE, 2 = TRUE,		
		3 to 15 = User Selectable		
8: Diagnostic Trouble Code	1 to 5	Will only be valid if the corresponding DTC has		
		a non-zero SPN		
9: Inching Control	N/A	User must enable the function block, as it is		
		disabled by default.		
10: Output Target Value	1 to 4	1 – Universal Signal Output 1		
		2 – Universal Signal Output 2		

		3 – Universal Signal Output 1 frequency with Mixed type 4 – Universal Signal Output 2 frequency with Mixed type used in Output Diagnostics, can be mapped to a CAN Transmit Message.
11: Output Feedback	1 to 4	1 – Universal Signal Output 1 2 – Universal Signal Output 2 3 – Universal Signal Output 1 frequency with Mixed type 4 – Universal Signal Output 2 frequency with Mixed type
12: Power Supply Measured	N/A	Measured power supply value in Volts, used in Power Supply Diagnostics, can be mapped to a CAN Transmit Message.
13: Processor Temperature Measured	N/A	Measured processor temperature in °C, used in Over Temperature Diagnostics, can be mapped to a CAN Transmit Message.
14: Receive Message Timeout	N/A	Only available in Diagnostic blocks.

Table 21 – Available Control Sources and Numbers

If a non-digital signal is selected to drive a digital input, the signal is interpreted to be OFF at or below the minimum of selected source and ON at or above the maximum of the selected source, and it will not change in between those points. Thus, analog to digital interpretation has a built-in hysteresis defined by minimum and maximum of the selected source, as shown in Figure 3. For example, Universal Input signal is interpreted to be ON at or above "Maximum Range" and OFF at or below "Minimum Range".

Control Constant Data has no unit nor minimum and maximum assigned to it, thus user must assign appropriate constant values according to intended use.

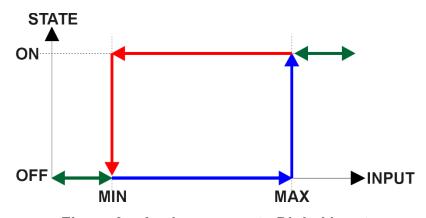


Figure 3 – Analog source to Digital input

1.13. Inching Control Block

The Inching Control Block provides fast and easy setup to control output with dual input. The Inching Control Block has two selectable inputs: Increasing Input, selected with "IncInput Source" and "IncInput Number" setpoints, and Decreasing Input, selected with "DecInput Source" and "DecInput Number" setpoints. Both inputs of the block are digital, thus when a non-digital signal is selected as an input it is interpreted in a manner described in section 1.12. The Control implements a xor logic, where output value increases when incrementing input is ON, decreases when decreasing input is ON and is held in current value while both inputs are ON or OFF, as shown in Table 22. Output of the control block is a value between 0 and 100 (%).

Increasing Input	Decreasing Input	Output
OFF	OFF	HOLD
ON	OFF	INCREASE
OFF	ON	DECREASE
ON	ON	HOLD

Table 22 - Inching Control Logic

Each input has a selectable mode that defines how the control block output responses when an input is ON. In 'Ramp' mode the output continuously ramps increasing towards maximum (100) or ramps decreasing towards minimum (0), while an input signal is ON. In 'Notch' mode the output increases by a set notch value, or decreases by a set notch value, when an input signal state changes from OFF to ON. The modes are selected with "Inc Response" and "Dec Response" setpoints. Ramp times are defined with setpoints "Inc Ramp" and "Dec Ramp". And notch values are set with "Inc Notch" and "Dec Notch" setpoints.

0	Ramp
1	Notch

Table 23 – Inc Response and Dec Response Options

After a power cycle, enabled Inching Control Block output holds the value set with "**Start Value**" setpoint until input turns ON.

2. OVERVIEW OF J1939 FEATURES

The software was designed to provide flexibility to the user with respect to messages sent from the ECU by providing:

- Configurable ECU Instance in the NAME (to allow multiple ECUs on the same network)
- Configurable Input Parameters
- Configurable PGN and Data Parameters
- Configurable Diagnostic Messaging Parameters, as required
- Diagnostic Log, maintained in non-volatile memory

2.1. Introduction to Supported Messages

The ECU is compliant with the standard SAE J1939, and supports following PGNs from the standard.

From J19	39-21 –	Data	Link	Layer
----------	---------	------	------	-------

•	Request		59904	0x00EA00
•	Acknowledgement		59392	0x00E800
•	Transport Protocol – Connection Management		60416	0x00EC00
•	Transport Protocol – Data Transfer Message		60160	0x00EB00
•	Proprietary B	from	65280	0x00FF00
		to	65535	0x00FFFF
		to	65535	0x00FFFF

From J1939-73 - Diagnostics

•	DM1 – Active Diagnostic Trouble Codes	65226	0x00FECA
•	DM2 – Previously Active Diagnostic Trouble Codes	65227	0x00FECB
•	DM3 – Diagnostic Data Clear/Reset for Previously Active DTCs	65228	0x00FECC
•	DM11 – Diagnostic Data Clear/Reset for Active DTCs	65235	0x00FED3
•	DM14 – Memory Access Request	55552	0x00D900
•	DM15 – Memory Access Response	55296	0x00D800
•	DM16 – Binary Data Transfer	55040	0x00D700

From J1939-81 – Network Management

•	Address Claimed/Cannot Claim	60928	0x00EE00
•	Commanded Address	65240	0x00FED8

From J1939-71 – Vehicle Application Layer

•	ECU Identification Information	64965	0x00FDC5
•	Software Identification	65242	0x00FEDA
•	Component Identification	65259	0x00FEEB

None of the application layer PGNs are supported as part of the default configurations, but they can be selected as desired for transmit function blocks.

Setpoints are accessed using standard Memory Access Protocol (MAP) with proprietary addresses. The Axiomatic Electronic Assistant (EA) allows for quick and easy configuration of the unit over CAN network.

2.2. NAME, Address and Identification Information

The 2In2Out Controller has the following default for the J1939 NAME. The user should refer to the SAE J1939/81 standard for more information on these parameters and their ranges.

Arbitrary Address	Yes
Capable	
Industry Group	0, Global
Vehicle System	0
Instance	
Vehicle System	0, Non-specific system
Function	126, I/O Controller
Function Instance	1, Axiomatic AX130540
ECU Instance	0, First Instance
Manufacture Code	162, Axiomatic Technologies
Identity Number	Variable, uniquely assigned during factory programming for each
	ECU

The ECU Instance is a configurable setpoint associated with the NAME. Changing this value will allow multiple ECUs of this type to be distinguishable from one another when they are connected on the same network.

The default value of the "ECU Address" setpoint is 128 (0x80), which is the preferred starting address for self-configurable ECUs as set by the SAE in J1939 tables B3 and B7. The Axiomatic EA allows for the selection of any address between 0 and 253. *It is user's responsibility to select an address that complies with the standard*. The user must also be aware that since the unit is arbitrary address capable, if another ECU with a higher priority NAME contends for the selected address, the 2ln2Out Controller will continue select the next highest address until it finds one that it can claim. See J1939/81 for more details about address claiming.

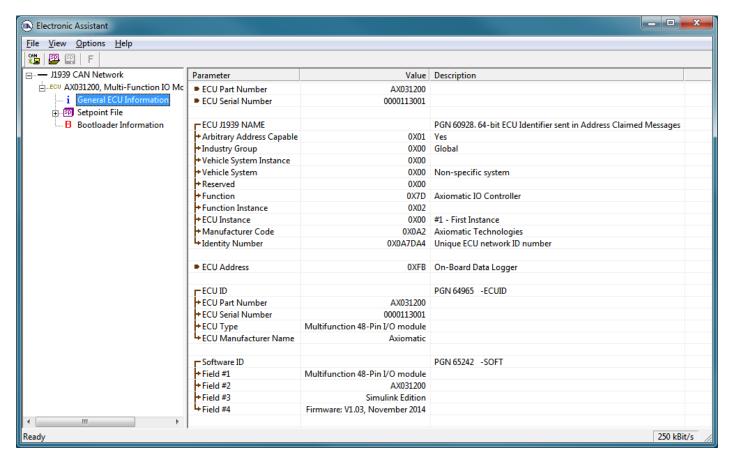


Figure 4 - General ECU Information

ECU Identification Information

PGN 64965		ECU Identification Information	-ECUID)
Transmission Repe	tition Rate:	On request		
Data Length:		Variable		
Extended Data Pag	e:	0		
Data Page:		0		
PDU Format:		253		
PDU Specific:		197 PGN Supporting Information:		
Default Priority:		6		
Parameter Group N	umber:	64965 (0x00FDC5)		
Start Position	Length	Parameter Name	SPN	
a	Variable	ECU Part Number, Delimiter (ASCII "*")	2901	
b	Variable	ECU Serial Number, Delimiter (ASCII "*")	2902	
С	Variable	ECU Location, Delimiter (ASCII "*")	2903	
d	Variable	ECU Type, Delimiter (ASCII "*")	2904	
е	Variable	ECU Manufacturer Name, Delimiter (ASCII "*")	4304	
(a)*(b)*(c)*(d)*(e)*		,		

Software Identifier

PGN 65242		Software Identification	-SOFT
Transmission Repo	etition Rate:	On request	
Data Length:		Variable	
Extended Data Pa	ge:	0	
Data Page:		0	
PDU Format:		254	
PDU Specific:		218 PGN Supporting Information:	
Default Priority:		6	
Parameter Group I	Number:	65242 (0x00FEDA)	
Start Position	Length	Parameter Name	SPN
1	1 Byte	Number of software identification fields	965
2-n	Variable	Software identification(s), Delimiter (ASCII "*")	234

Byte 1 is set to 5, and the identification fields are as follows.

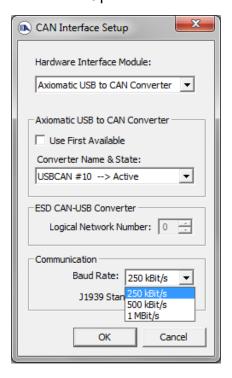
(Part Number)*(Version)*(Date)*(Owner)*(Description)

The Axiomatic EA shows all this information in "General ECU Information", as shown in Figure 4.

Note: The information provided in the Software ID is available for any J1939 service tool which supports the PGN -SOFT

Component Identification

PGN 65259		Component Identification	-CI
Transmission Rep	etition Rate:	On request	
Data Length:		Variable	
Extended Data Pa	ige:	0	
Data Page:	_	0	
PDU Format:		254	
PDU Specific:		235 PGN Supporting Information:	
Default Priority:		6	
Parameter Group	Number:	65259 (0x00FEEB)	
Start Position	Length	Parameter Name	SPN
а	1-5 Byte	Make, Delimiter (ASCII "*")	586
b	Variable	Model, Delimiter (ASCII "*")	587
С	Variable	Serial Number, Delimiter (ASCII "*")	588
d	Variable	Unit Number (Power Unit), Delimiter (ASCII "*")	233
(a)*(b)*(c)*(d)*(e)*			


3. ECU SETPOINTS ACCESSED WITH THE AXIOMATIC ELECTRONIC ASSISTANT

This section describes in detail each setpoint, and their default and ranges. Default values presented in tables are values used when setpoint in question is active. Many of the setpoints are dependent on other setpoints and they may not be active by default. Associated Figures show screen capture of initial operation, however some of the setpoints are not in default condition as they are set differently to activate more setpoints for the image. The setpoints are divided into setpoint groups as they are shown in the Axiomatic EA. For more information on how each setpoint is used by 6 Input 5 Output Valve controller, refer to the relevant section in this user manual.

3.1. Accessing the ECU Using the Axiomatic EA

ECU P/N AX130540 is provided with Automatic Baud Rate Detection Process (Auto Baud Rate). AX130540 can be classified as Adjustable Baud Rate Only Temporarily Installed ECU with Silent Baud Discovery Mode, described in J1939/16. Each time ECU is powered on Silent Baud Discovery Mode is utilized to select the CAN bus baud rate. Supported baud rates are 250 kbit/s, 500 kbit/s and 1 Mbit/s.

The CAN Interface Setup can be found from "Options" menu in the Axiomatic EA.

3.2. J1939 Network Parameters

"ECU Instance Number" and "ECU Address" setpoints and their effect are defined in Section 2.2.

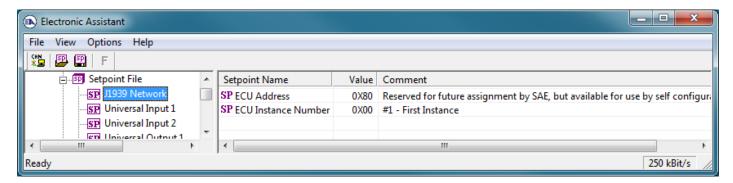


Figure 5 - Screen Capture of J1939 Setpoints

Name	Range	Default	Notes
ECU Address	0x80	0-253	Preferred address for a
			self-configurable ECU
ECU Instance	0-7	0x00	Per J1939-81

Table 24 – J1939 Network Setpoints

If non-default values for the "ECU Instance Number" or "ECU Address" are used, they will be mirrored during a setpoint file flashing, and will only take effect once the entire file has been downloaded to the unit. After the setpoint flashing is complete, the unit will claim the new address and/or re-claim the address with the new NAME. If these setpoints are changing, it is recommended to close and re-open the CAN connection on the Axiomatic EA after the file is loaded so that only the new NAME and address are showing in the J1939 CAN Network ECU list.

3.3. Universal Signal Input Setpoints

The Universal Signal Inputs are defined in Section 1.1. Please refer there for detailed information about how all these setpoints are used.

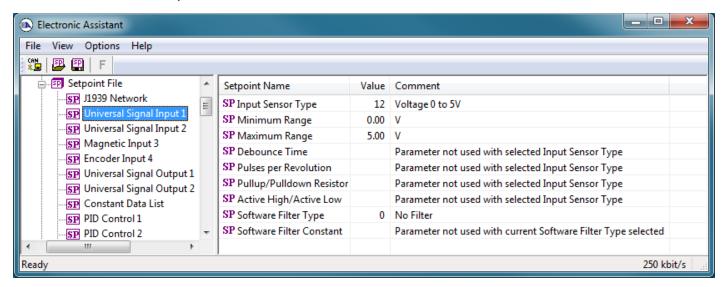


Figure 6 – Screen Capture of Universal Signal Input Setpoints

Name	Range	Default	Notes
Input Sensor Type	Drop List	Voltage 0 to 5V	See Table 1
Minimum Range	From Minimum Error	Depends on Input Sensor	
_	to Maximum Range	Type	
Maximum Range	From Minimum	Depends on Input Sensor	
	Range to Maximum	Туре	
	Error		
Debounce Time	Drop List	None	See Table 2
Pulse per Revolution	0 to 1.00	1	See Section 1.1
Pullup/Pulldown Resistor	Drop List	10kΩ Pulldown	See Table 3
Active High/Active Low	Drop List	Active High	See Table 4
Software Filter Type	Drop List	No Filtering	See Section 1.2
Software Filter Constant	11000	1	

Table 25 - Universal Signal Input Setpoints

3.4. Magnetic Input and Encoder Input Setpoints

Magnetic Input and Encoder Input setpoints function similar as Universal Signal Input Setpoints above. Universal Signal Inputs are presented in Section 1.1. Please refer there for detailed information about how all these setpoints are used.

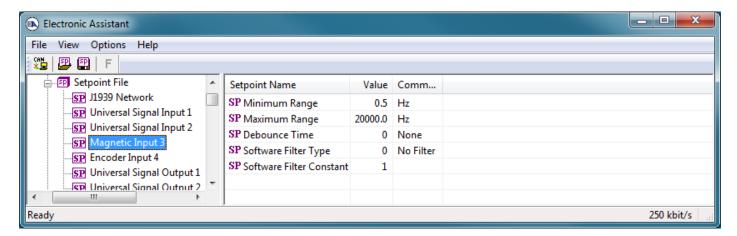


Figure 7 - Screen Capture of Universal Signal Input Setpoints

Name	Range	Default	Notes
Minimum Range	0.5 Hz to Maximum	0.5 Hz	
_	Range		
Maximum Range	From Minimum	20000 Hz	
_	Range to 20000 Hz		
Debounce Time	Drop List	None	See Table 2
Software Filter Type	Drop List	No Filtering	See Section 1.2
Software Filter Constant	11000	1	

Table 26 – Universal Signal Input Setpoints

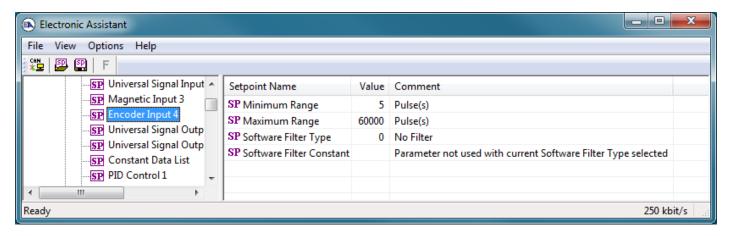


Figure 8 – Screen Capture of Universal Signal Input Setpoints

Name	Range	Default	Notes
Minimum Range	1 to Maximum Range	1 Pulse(s)	
Maximum Range	From Minimum Range to 600000	60000 Pulse(s)	
Active High/Active Low	Drop List	Active High	See Table 4
Software Filter Type	Drop List	No Filtering	See Section 1.2
Software Filter Constant	11000	1	

Table 27 - Universal Signal Input Setpoints

3.5. Universal Signal Output Setpoints

The Universal Signal Output Function Block is defined in Section 1.3. Please refer there for detailed information about how these setpoints are used. Outputs are disabled by default. To enable an output "**Output Type**" and "**Control Source**" must be chosen.

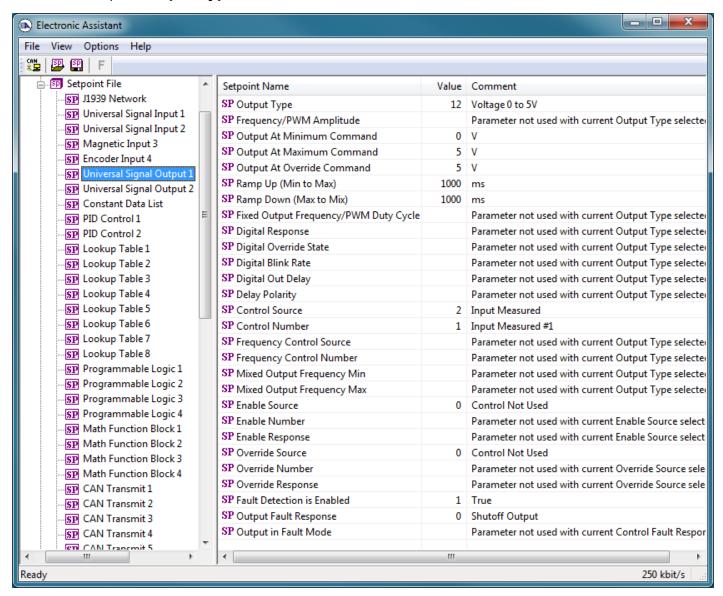


Figure 9 – Screen Capture of Universal Signal Output Setpoints

Name	Range	Default	Notes
Output Type	Drop List	Disabled	See Table 6
Frequency/PWM Amplitude	Drop List	0 to 5 V	
Output At Minimum Command	Limit to Limit	Depends on Output Type	
Output At Maximum Command	Limit to Limit	Depends on Output Type	
Output At Override Command	Limit to Limit	Depends on Output Type	
Ramp Up (Min to Max)	0 to 10 000ms	0ms	
Ramp Down (Max to Min)	0 to 10 000ms	0ms	
Fixed Output Frequency/PWM	0.1 to 100 %	50 %	
Duty Cycle	0.1 Hz to 50 000 Hz	250 Hz	
Digital Response	Drop List	Normal On/Off	See Table 7
Digital Override State	Drop List	ON	
Digital Blink Rate	100 to 5000 ms	1000ms	
Digital Out Delay	0 to 60000 ms	0ms	
Delay Polarity	Drop List	Rising Edge	See Table 8 Table 8 -
			Delay Polarity
Control Source	Drop List	Universal Input Measured	See Table 21
Control Number	Depends on control	1	See Table 21
	source		
Frequency Control Source	Drop List	Control not used	See Table 21
Frequency Control Number	Depends on control	1	See Table 21
	source		
Mixed Output Frequency Min	0.1 Hz to 50 000 Hz	50.0 Hz	
Mixed Output Frequency Min	0.1 Hz to 50 000 Hz	250.0 Hz	
Enable Source	Drop List	Control not used	See Table 21
Enable Number	Depends on enable source	1	See Table 21
Enable Response	Drop List	Enable When On, else Shutoff	See Table 9
Override Source	Drop List	Control not used	See Table 21
Override Number	Depends on override	1	See Table 21
	source		202 1000 21
Override Response	Drop List	Override When On	See Table 10
Fault Detection is Enabled	Drop List	True	
Output Fault Response	Drop List	Shutoff Output	See Table 11
Output in Fault Mode	Limit to Limit	Depends on Output Type	

Table 28 - Universal Signal Output Setpoints

3.6. Constant Data List

The Constant Data List Function Block is provided to allow the user to select values as desired for various logic block functions.

The first two constants are fixed values of 0 (False) and signal1 (True) for use in binary logic. The remaining 13 constants are fully user programmable to any value between +/. 1 000 000. The default values (shown in Figure 10) are arbitrary and should be configured by the user as appropriate for their application.

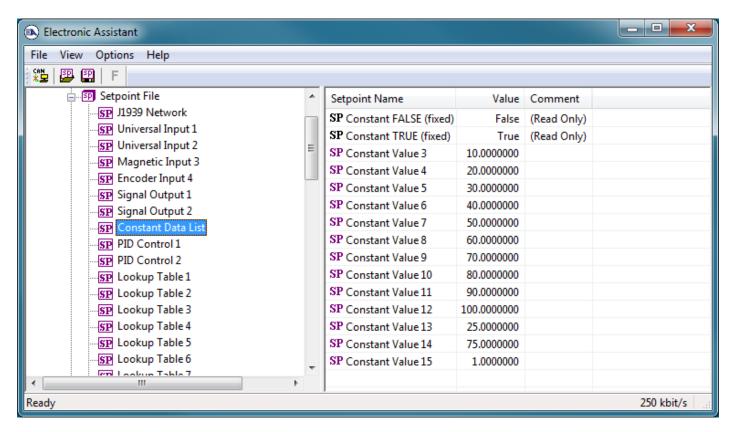


Figure 10 – Screen Capture of Constant Data List Setpoints

3.7. PID Control

The PID Control Function Block is defined in Section 1.5. Please refer there for detailed information about how all these setpoints are used.

Command Source is set to 'Control Not Used' by default. To enable a PID Control, select appropriate "PID Target Command Source" and "PID Feedback Input Source".

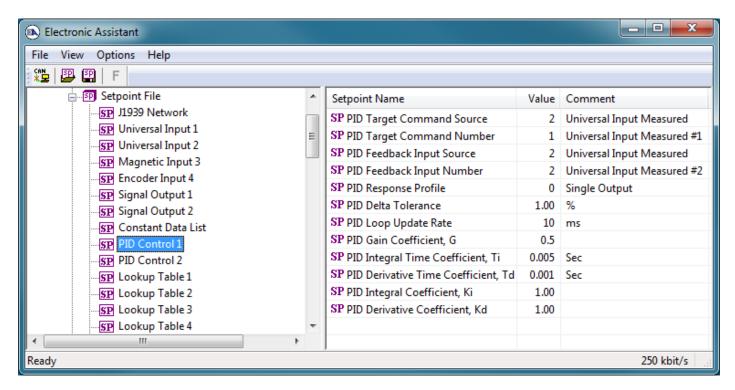


Figure 11 - Screen Capture of PID Control Setpoints

Name	Range	Default	Notes
PID Target Command Source	Drop List	Control Not Used	See Table 21
PID Target Command Number	Depends on control	1	See Table 21
	source		
PID Feedback Input Source	Drop List	Control Not Used	See Table 21
PID Feedback Input Number	Depends on control	1	See Table 21
	source		
PID Response Profile	Drop List	Single Output	See Table 15
PID Delta Tolerance	0 to 100	1.00 %	%
PID Loop Update Rate	1 to 60 000 ms	10ms	1 ms resolution
PID Gain Coefficient, G	0.1 to 10	0.5	See Equation 4
PID Integral Time Coefficient, Ti	0.001 to 10 Sec	0.005 Sec	0.001 Sec (1ms) resolution
PID Derivative Time Coefficient, Td	0.001 to 10 Sec	0.001 Sec	0.001 Sec (1ms) resolution
PID Integral Coefficient, Ki	0 to 10	1.00	0 disables integral, PD ctrl
PID Derivative Coeffecient, Kd	0 to 10	1.00	0 disables derivative, PI ctrl

Table 29 – Programmable Logic Setpoints

3.8. Lookup Table

The Lookup Table Function Block is defined in Section 1.6 Please refer there for detailed information about how all these setpoints are used. "**X-Axis Source**" is set to 'Control Not Used' by default. To enable a Lookup Table select appropriate "**X-Axis Source**".

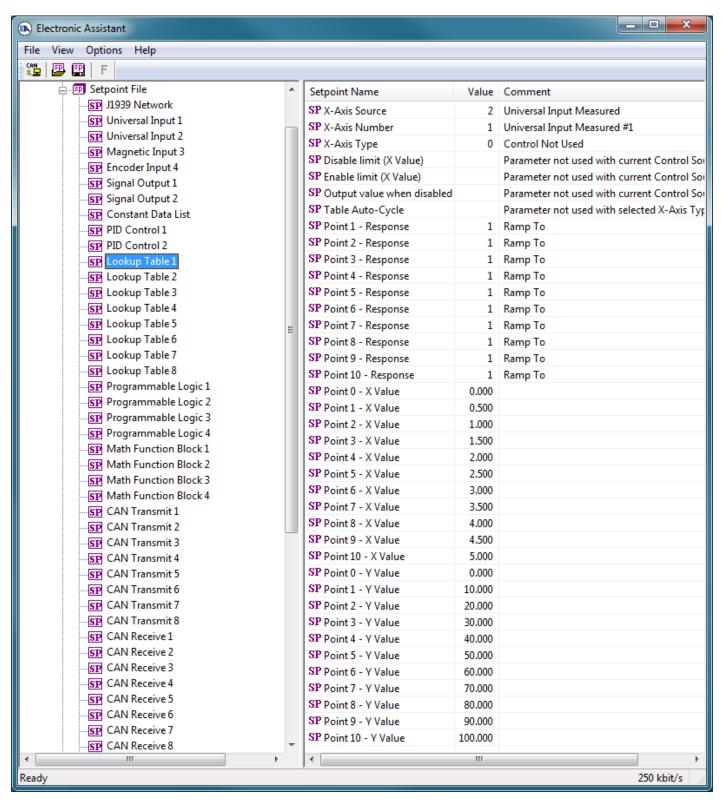


Figure 12 – Screen Capture of Lookup table Setpoints

Name	Range	Default	Notes
X-Axis Source	Drop List	Control Not Used	See Table 21
X-Axis Number	Depends on control source	1	See Table 21
X-Axis Type	Drop List	Data Response	See Table 16

Disable limit (X Value)	From X-Axis source minimum	X-Axis source maximum	See Section 1.6
	to X-Axis source maximum	5.000	10000
Enable limit (X Value)	From X-Axis source minimum to X-Axis source maximum	2.500	See Section 1.6
Output value when disabled	-10 ⁶ to 10 ⁶	0.000	See Section 1.6
Table Auto-Cycle	Drop List	0	See Section 1.0
Point 1 - Response	Drop List	Ramp To	See Table 17
Point 2 - Response	Drop List	Ramp To	See Table 17
Point 3 - Response	Drop List	Ramp To	See Table 17
Point 4 - Response	Drop List	Ramp To	See Table 17
Point 5 - Response	Drop List	Ramp To	See Table 17
Point 6 - Response	Drop List	Ramp To	See Table 17
Point 7 - Response	Drop List	Ramp To	See Table 17
Point 8 - Response	Drop List	Ramp To	See Table 17
Point 9 - Response	Drop List	Ramp To	See Table 17
Point 10 - Response	Drop List	Ramp To	See Table 17
Point 0 - X Value	From X-Axis source minimum	X-Axis source minimum	See Section 1.6
	to Point 1 - X Value	0.000	
Point 1 - X Value	From Point 0 - X Value	0.500	See Section 1.6
	to Point 2 - X Value		
Point 2 - X Value	From Point 1 - X Value	1.000	See Section 1.6
	to Point 3 - X Value		
Point 3 - X Value	From Point 2 - X Value	1.500	See Section 1.6
	to Point 4 - X Value		
Point 4 - X Value	From Point 3 - X Value	2.000	See Section 1.6
	to Point 5 - X Value source		
Point 5 - X Value	From Point 4 - X Value	2.500	See Section 1.6
	to Point 6 - X Value		
Point 6 - X Value	From Point 5 - X Value	3.000	See Section 1.6
	to Point 7 - X Value		
Point 7 - X Value	From Point 6 - X Value	3.500	See Section 1.6
	to Point 8 - X Value	1.000	1 2 2 11 12
Point 8 - X Value	From Point 7 - X Value	4.000	See Section 1.6
Deint O. V.Value	to Point 9 - X Value	4.500	Coo Cootion 4 C
Point 9 - X Value	From Point 8 - X Value	4.500	See Section 1.6
Point 10 - X Value	to Point 10 - X Value From Point 9 - X Value	V Avia source maximum	See Section 1.6
Point 10 - A value	to X-Axis source maximum	X-Axis source maximum 5.000	See Section 1.0
Point 0 - Y Value	-10 ⁶ to 10 ⁶	0.000	
Point 1 - Y Value	-10° to 10°	10.000	
Point 2 - Y Value	-10° to 10°	20.000	
Point 3 - Y Value	-10° to 10°	30.000	
Point 4 - Y Value	-10° to 10°	40.000	
Point 5 - Y Value	-10° to 10°	50.000	
Point 6 - Y Value	-10° to 10°	60.000	
Point 7 - Y Value	-10° to 10°	70.000	
Point 8 - Y Value	-10° to 10°	80.000	
Point 9 - Y Value			
	-10 ⁶ to 10 ⁶	90.000	

Table 30 – Lookup Table Setpoints

3.9. Programmable Logic

The Programmable Logic function block is defined in Section 1.7. Please refer there for detailed information about how all these setpoints are used. "**Programmable Logic Enabled**" is '*False*' by default. To enable Logic set "**Programmable Logic Enabled**" to '*True*' and select appropriate "**Argument Source**".

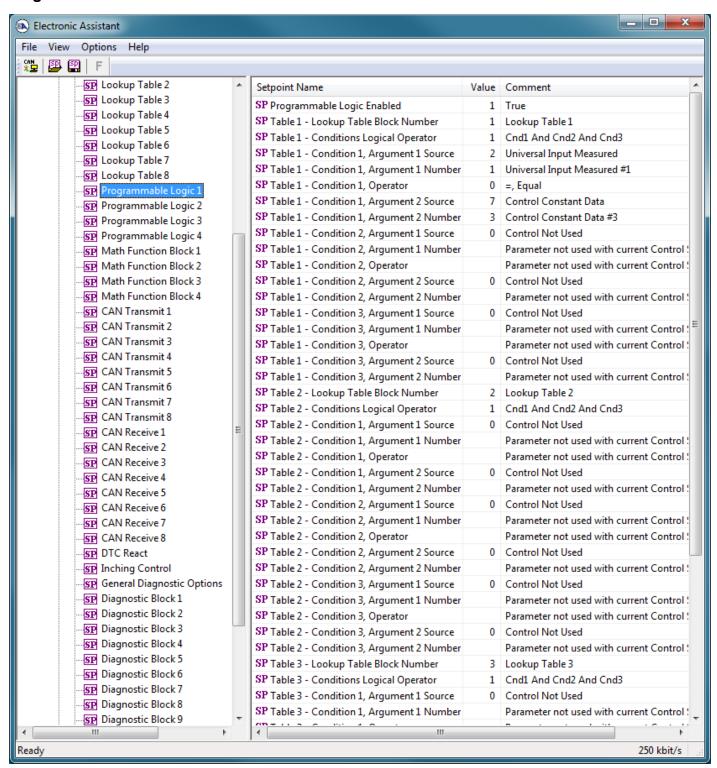


Figure 13 – Screen Capture of Programmable Logic Setpoints

Setpoint ranges and default values for Programmable Logic Blocs are listed in Table 31. Only "**Table1**" setpoint are listed, because other "**TableX**" setpoints are similar, except for the default value of the "**Lookup Table Block Number**" setpoint, which is X for "**TableX**".

Name	Range	Default	Notes
Programmable Logic Enabled	Drop List	False	
Table1 - Lookup Table Block Number	1 to 8	Look up Table 1	
Table1 - Conditions Logical Operation	Drop List	Default Table	See Table 19
Table1 - Condition1, Argument 1 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition1, Argument 1 Number	Depends on control source	1	See Table 21
Table1 - Condition1, Operator	Drop List	=, Equal	See Table 18
Table1 - Condition1, Argument 2 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition1, Argument 2 Number	Depends on control source	1	See Table 21
Table1 - Condition2, Argument 1 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition2, Argument 1 Number	Depends on control source	1	See Table 21
Table1 - Condition2, Operator	Drop List	=, Equal	See Table 18
Table1 - Condition2, Argument 2 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition2, Argument 2 Number	Depends on control source	1	See Table 21
Table1 - Condition3, Argument 1 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition3, Argument 1 Number	Depends on control source	1	See Table 21
Table1 - Condition3, Operator	Drop List	=, Equal	See Table 18
Table1 - Condition3, Argument 2 Source	Drop List	Control Not Used	See Table 21
Table1 - Condition3, Argument 2 Number	Depends on control source	1	See Table 21

Table 31 – Programmable Logic Setpoints

3.10. Math Function Block

The Math Function Block is defined in Section 1.8. Please refer there for detailed information about how all these setpoints are used. "**Math Function Enabled**" is 'False' by default. To enable a Math Function Block, set "**Math Function Enabled**" to 'True' and select appropriate "**Input Source**".

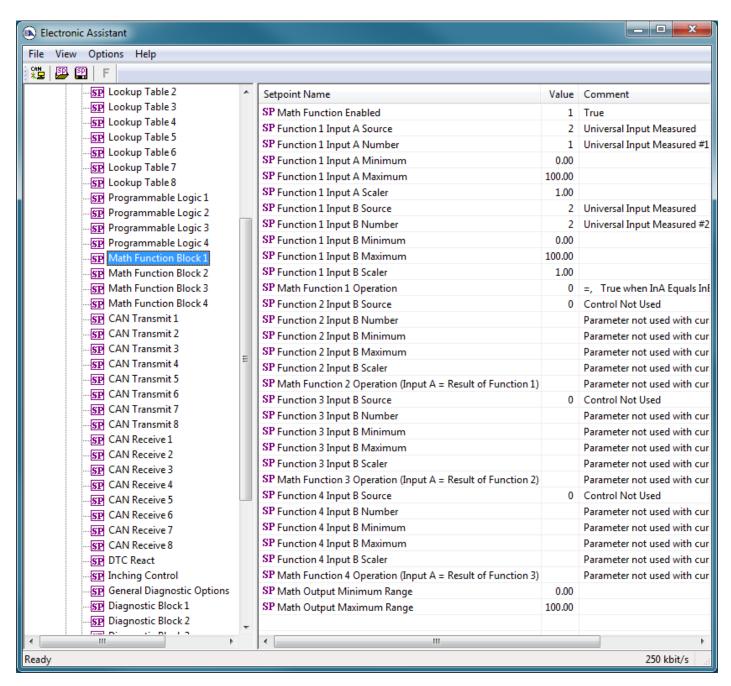


Figure 14 - Screen Capture of Math Function Block Setpoints

Name	Range	Default	Notes
Math Function Enabled	Drop List	False	
Function 1 Input A Source	Drop List	Control not used	See Table 21
Function 1 Input A Number	Depends on control	1	See Table 21
·	source		
Function 1 Input A Minimum	-10 ⁶ to 10 ⁶	0.0	
Function 1 Input A Maximum	-10 ⁶ to 10 ⁶	100.0	
Function 1 Input A Scaler	-1.00 to 1.00	1.00	
Function 1 Input B Source	Drop List	Control not used	See Table 21
Function 1 Input B Number	Depends on control source	1	See Table 21
Function 1 Input B Minimum	-10 ⁶ to 10 ⁶	0.0	
Function 1 Input B Maximum	-10 ⁶ to 10 ⁶	100.0	
Function 1 Input B Scaler	-1.00 to 1.00	1.00	
Math Function 1 Operation	Drop List	=, True when InA Equals InB	See Table 20
Function 2 Input B Source	Drop List	Control not used	See Table 21
Function 2 Input B Number	Depends on control	1	See Table 21
·	source		
Function 2 Input B Minimum	-10 ⁶ to 10 ⁶	0.0	
Function 2 Input B Maximum	-10 ⁶ to 10 ⁶	100.0	
Function 2 Input B Scaler	-1.00 to 1.00	1.00	
Math Function 3 Operation	Drop List	=, True when InA Equals InB	See Table 20
Function 3 Input B Source	Drop List	Control not used	See Table 21
Function 3 Input B Number	Depends on control	1	See Table 21
	source		
Function 3 Input B Minimum	-10 ⁶ to 10 ⁶	0.0	
Function 3 Input B Maximum	-10 ⁶ to 10 ⁶	100.0	
Function 3 Input B Scaler	-1.00 to 1.00	1.00	
Math Function 3 Operation	Drop List	=, True when InA Equals InB	See Table 20
Function 4 Input B Source	Drop List	Control not used	See Table 21
Function 4 Input B Number	Depends on control	1	See Table 21
	source		
Function 4 Input B Minimum	-10 ⁶ to 10 ⁶	0.0	
Function 4 Input B Maximum	-10 ⁶ to 10 ⁶	100.0	
Function 4 Input B Scaler	-1.00 to 1.00	1.00	
Math Function 4 Operation	Drop List	=, True when InA Equals InB	See Table 20
Math Output Minimum Range	-10 ⁶ to 10 ⁶	0.0	
Math Outptu Maximum Range	-10 ⁶ to 10 ⁶	100.0	

Table 32 – Math Function Setpoints

3.11. CAN Transmit Setpoints

CAN Transmit Message Function Block is presented in Section 1.10. Please refer there for detailed information how these setpoints are used. "**Transmit Repetition Rate**" is 0ms by default, thus no message will be sent.

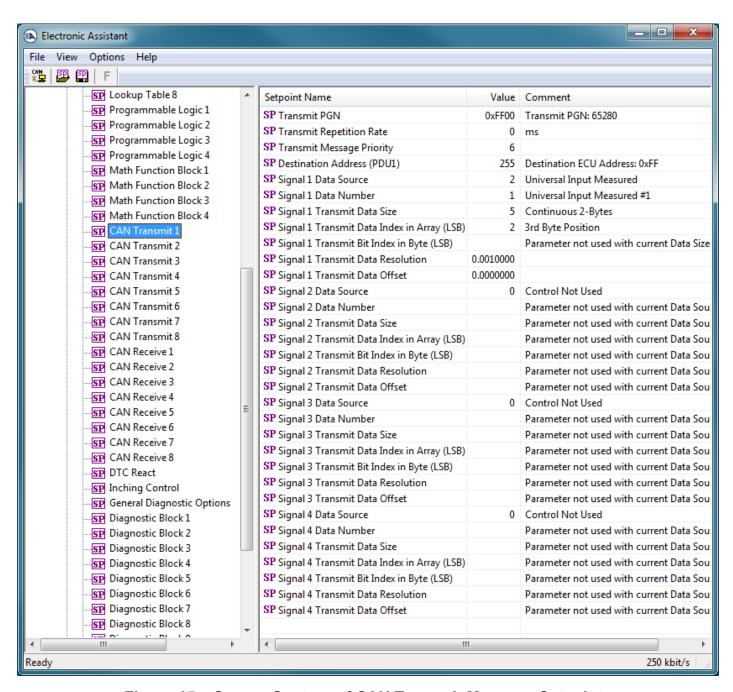


Figure 15 – Screen Capture of CAN Transmit Message Setpoints

Name	Range	Default	Notes
Transmit PGN	0xff00 0xffff	Different for each	See Section 1.10.1
Transmit Repetition Rate	0 65000 ms	0ms	0ms disables transmit
Transmit Message Priority	07	6	Proprietary B Priority
Destination Address	0255	255	Not used by default
Signal 1 Control Source	Drop List	Different for each	See Table 21
Signal 1 Control Number	Drop List	Different for each	See 1.10.2
Signal 1 Transmit Data Size	Drop List	2 bytes	
Signal 1 Transmit Data Index in Array	0-7	2	
Signal 1 Transmit Bit Index In Byte	0-7	0	
Signal 1 Transmit Data Resolution	-100000.0 to 100000	0.001	
Signal 1 Transmit Data Offset	-10000 to 10000	0.0	
Signal 2 Control Source	Drop List	Signal undefined	See Table 21
Signal 2 Control Number	Drop List	Signal undefined	See 1.10.2
Signal 2 Transmit Data Size	Drop List	2 bytes	
Signal 2 Transmit Data Index in Array	0-7	0	
Signal 2 Transmit Bit Index In Byte	0-7	0	
Signal 2 Transmit Data Resolution	-100000.0 to 100000	0.001	
Signal 2 Transmit Data Offset	-10000 to 10000	0.0	
Signal 3 Control Source	Drop List	Signal undefined	See Table 21
Signal 3 Control Number	Drop List	Signal undefined	See 1.10.2
Signal 3 Transmit Data Size	Drop List	2 bytes	
Signal 3 Transmit Data Index in Array	0-7	0	
Signal 3 Transmit Bit Index In Byte	0-7	0	
Signal 3 Transmit Data Resolution	-100000.0 to 100000	0.001	
Signal 3 Transmit Data Offset	-10000 to 10000	0.0	
Signal 4 Control Source	Drop List	Signal undefined	See Table 21
Signal 4 Control Number	Drop List	Signal undefined	See 1.10.2
Signal 4 Transmit Data Size	Drop List	2 bytes	
Signal 4 Transmit Data Index in Array	0-7	0	
Signal 4 Transmit Bit Index In Byte	0-7	0	
Signal 4 Transmit Data Resolution	-100000.0 to 100000	0.001	
Signal 4 Transmit Data Offset	-10000 to 10000	0.0	

Table 33 – CAN Transmit Message Setpoints

3.12. CAN Receive Setpoints

The Math Function Block is defined in Section 1.11. Please refer there for detailed information about how these setpoints are used. "**Receive Message Timeout**" is set to 0ms by default. To enable Receive message set "**Receive Message Timeout**" that differs from zero.

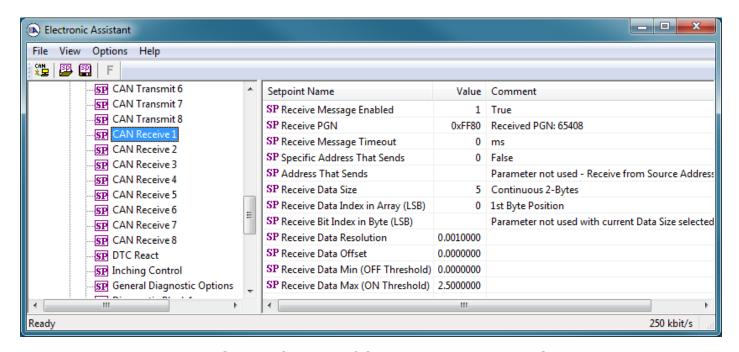


Figure 16 – Screen Capture of CAN Receive Message Setpoints

Name	Range	Default	Notes
Received Message Enabled	Drop List	False	
Received PGN	0 to 65536	Different for each	
Received Message Timeout	0 to 60 000 ms	0ms	
Specific Address that sends PGN	Drop List	False	
Address That Sends	0 to 255	254 (0xFE, Null Addr)	
Receive Transmit Data Size	Drop List	2 bytes	
Receive Transmit Data Index in Array	0-7	0	
Receive Transmit Bit Index In Byte	0-7	0	
Receive Transmit Data Resolution	-100000.0 to 100000	0.001	
Receive Transmit Data Offset	-10000 to 10000	0.0	
Receive Data Min (Off Threshold)	-1000000 to Max	0.0	
Receive Data Max (On Threshold)	-100000 to 100000	2.0	

Table 34 - CAN Receive Setpoints

3.13. DTC React

The DTC React Function Block is defined in Section 1.9. Please refer there for detailed information about how these setpoints are used.

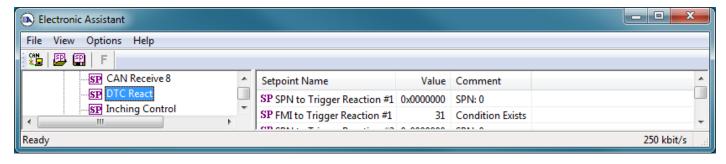


Figure 17 – Screen Capture of DTC React Setpoints

Name	Range	Default	Notes
SPN to Trigger Reaction #1	0 to 524287	0	0 is an illegal value, and
			disables the DTC
FMI to Trigger Reaction #X	Drop List	31, Condition Exists	Supports all FMIs in the
	·		J1939 standard

Table 35 - DTC React Setpoints

3.14. Inching Control

The Inching Control Block is defined in Section 1.13 Please refer there for detailed information about how these setpoints are used.

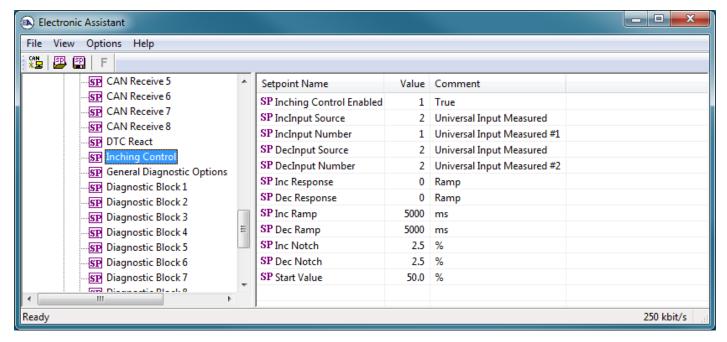


Figure 18 - Screen Capture of Inching Control Setpoints

Name	Range	Default	Notes
Inching Control Enabled	Drop List	False	
IncInput Source	Drop List	Universal Input Measured	See Table 21
IncInput Number	Depends on IncInput	1	See Table 21
	source		
DecInput Source	Drop List	Universal Input Measured	See Table 21
DecInput Number	Depends on DecInput	2	See Table 21
	source		
Inc Response	Drop List	Ramp	See Table 23
Dec Response	Drop List	Ramp	See Table 23
Inc Ramp	0 to 20 000 ms	5000 ms	
Dec Ramp	0 to 20 000 ms	5000 ms	
Inc Notch	0 to 100 %	2.5 %	
Dec Notch	0 to 100 %	2.5 %	
Start Value	0 to 100 %	50.0 %	

Table 36 – Inching Control Setpoints

3.15. General Diagnostic Options Setpoints

These setpoints control the shutdown of the ECU in case of a power supply, CPU temperature or CAN bus related errors. Diagnostics are defined in 1.3. Please refer there for detailed information how these setpoints are used.

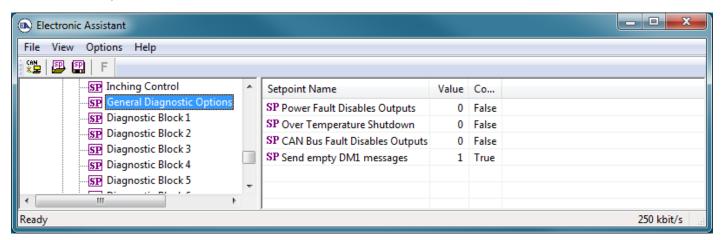


Figure 19 – Screen Capture of General Diagnostic Options Setpoints

Name	Range	Default	Notes
Power Fault Disables	Drop List	False	
Outputs			
Over Temperature	Drop List	False	
Shutdown	·		
CAN Bus Fault Disables	Drop List	False	
Outputs			
Send empty DM1	Drop List	True	
messages			

Table 37 - General Diagnostic Setpoints

3.16. Diagnostic Block Setpoints

There are 16 Diagnostics blocks that can be configured to monitor various parameters of the Controller. The Diagnostic Function Block is defined in section 1.4. Please refer there for detailed information how these setpoints are used.

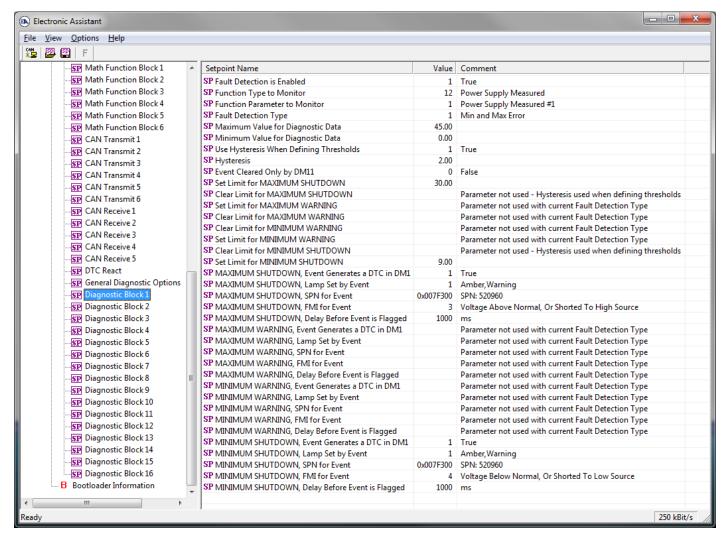


Figure 20 – Screen Capture of Diagnostic Block Setpoints

Name	Range	Default	Notes
Fault Detection is Enabled	Drop List	False	
Function Type to Monitor	Drop List	0 – Control not used	
Function parameter to	Drop List	0 – No selection	
Monitor	'		
Fault Detection Type	Drop List	1 – Min and Max Error	See section 1.4
Maximum Value for	Minimum Value for	5.0	
Diagnostic Data	Diagnostic Data 4.28e ⁹		
Minimum Value for	0.0 Maximum Value for	0.0	
Diagnostic Data	Diagnostic Data		
Use Hysteresis When	Drop List	False	
Defining Thresholds			
Hysteresis	0.0 Maximum Value for Diagnostic Data	0.0	
Event Cleared only by DM11	Drop List	False	
Set Limit for MAXIMUM	Minimum Value for	4.8	
SHUTDOWN	Diagnostic Data		
	Maximum Value for		
	Diagnostics Data		
Clear Limit for MAXIMUM	Minimum Value for	4.6	
SHUTDOWN	Diagnostic Data		
	Maximum Value for		
	Diagnostics Data		
Set Limit for MAXIMUM	Minimum Value for	0.0	
WARNING	Diagnostic Data Maximum Value for		
	Diagnostics Data		
Clear Limit for MAXIMUM	Minimum Value for	0.0	
WARNING	Diagnostic Data	0.0	
W a d di do	Maximum Value for		
	Diagnostics Data		
Clear Limit for MINIMUM	Minimum Value for	0.0	
WARNING	Diagnostic Data		
	Maximum Value for		
	Diagnostics Data		
Set Limit for MINIMUM	Minimum Value for	0.0	
WARNING	Diagnostic Data		
	Maximum Value for		
Cloor Limit for MAINIMALINA	Diagnostics Data	0.4	
Clear Limit for MINIMUM SHUTDOWN	Minimum Value for Diagnostic Data	0.4	
SHUIDOWN	Maximum Value for		
	Diagnostics Data		
Set Limit for MINIMUM	Minimum Value for	0.2	
SHUTDOWN	Diagnostic Data	0.2	
	Maximum Value for		
	Diagnostics Data		
MAXIMUM SHUTDOWN,	Drop List	True	
Event Generates a DTC in DM1			
MAXIMUM SHUTDOWN,	Drop List	0 – Protect	See Table 12
Lamp Set by Event	Drop List		JOC TABLE 12
MAXIMUM SHUTDOWN,	0524287	520448 (\$7F100)	It is the user's
SPN for Event		(411 100)	responsibility to select an
			SPN that will not violate
			the J1939 standard.

MAXIMUM SHUTDOWN, FMI for Event	Drop List	3, Voltage Above Normal	See Table 13
MAXIMUM SHUTDOWN, Delay Before Event is Flagged	060000 ms	1000	
MAXIMUM WARNING, Event Generates a DTC in DM1	Drop List	True	
MAXIMUM WARNING, Lamp Set by Event	Drop List	0 – Protect	See Table 12
MAXIMUM WARNING, SPN for Event	0524287	520704 (\$7F200)	It is the user's responsibility to select an SPN that will not violate the J1939 standard.
MAXIMUM WARNING, FMI for Event	Drop List	3, Voltage Above Normal	See Table 13
MAXIMUM WARNING, Delay Before Event is Flagged	060000 ms	1000	
MINIMUM WARNING, Event Generates a DTC in DM1	Drop List	True	
MINIMUM WARNING, Lamp Set by Event	Drop List	0 – Protect	See Table 12
MAXIMUM WARNING, SPN for Event	0524287	520960 (\$7F300)	It is the user's responsibility to select an SPN that will not violate the J1939 standard.
MINIMUM WARNING, FMI for Event	Drop List	4, Voltage Below Normal	See Table 13
MINIMUM WARNING, Delay Before Event is Flagged	060000 ms	1000	
MINIMUM SHUTDOWN, Event Generates a DTC in DM1	Drop List	True	
MINIMUM SHUTDOWN, Lamp Set by Event	Drop List	Amber Warning	See Table 12
MINIMUM SHUTDOWN, SPN for Event	0524287	521216 (\$7F400)	It is the user's responsibility to select an SPN that will not violate the J1939 standard.
MINIMUM SHUTDOWN, FMI for Event	Drop List	4, Voltage Below Normal	See Table 13
MINIMUM SHUTDOWN, Delay Before Event is Flagged	060000 ms	1000	

Table 38 – Diagnostic Block Setpoints

4. CONTROLLER PARAMETERS ACCESSED WITH E-WRITE NFC

The controller's NFC technology provides users the ability to configure the controllers without the need to be powered on. A set of parameters can be configured with the mobile E-Write NFC configuration tool, which is available for download at Google Play Store. E-Write NFC application allows the user to configure the module as well as to assign each of the AX022420 controllers a unique alias to easily distinguish between the controllers with a large system. To ensure prompt and easy use of the NFC only most essential setpoints can be configured through NFC. Available setpoint are presented in next subchapters.

4.1. Controller Information

The Controller Information provides information such as current version of firmware and date, serial number, as well as a configurable parameter to identify various AX022420 controllers within an application system, Controller Alias.

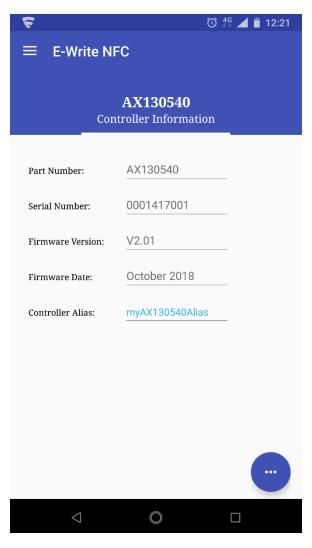


Figure 21 – Screen Capture of Controller Information Parameters

4.2. Universal Input

All the setpoints of Universal Input Blocks are available to be configured through the NFC. The Universal Input block is defined in section 1.1. Please refer there for information how these parameters are used.

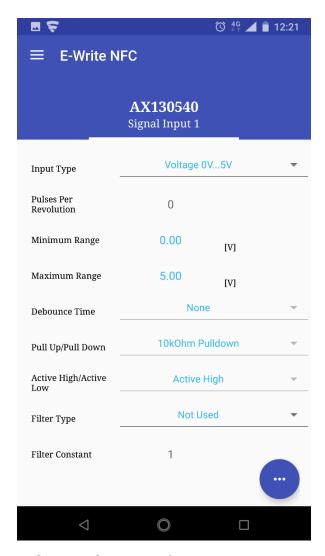


Figure 22 - Screen Capture of Universal Input Parameters

Name	Range	Default	Notes
Input Sensor Type	Drop List	VOLTAGE_0_TO_5V	See Table 1
Pulses per Revolution	Drop List	FALSE	See Section 1.1
Minimum Range	From Minimum Error	Depends on Input Sensor	
	to Maximum Range	Туре	
Maximum Range	From Minimum	Depends on Input Sensor	
	Range to Maximum	Туре	
	Error		
Debounce Time	Drop List	None	See Table 2
Pullup/Pulldown Resistor	Drop List	10kΩ Pulldown	See Table 3
Active High/Active Low	Drop List	Active High	See Table 4
Software Filter Type	Drop List	No Filtering	See Section 1.2
Software Filter Constant	11000	1	

Table 39 - Universal Input Parameters

4.3. Encoder Input

All Encoder Input setpoints are available to be configured through the NFC. The Encoder Input is defined in section 1.1. Please refer there for information how these parameters are used.

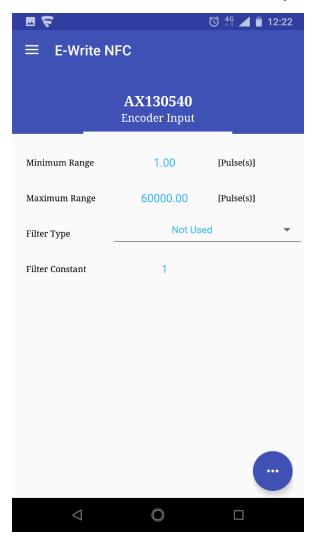


Figure 23 - Screen Capture of Encoder Input Parameters

Name	Range	Default	Notes
Minimum Range	1 to Maximum Range	1 Pulse(s)	
Maximum Range	From Minimum	60000 Pulse(s)	
	Range to 600000		
Software Filter Type	Drop List	No Filtering	See Section 1.1
Software Filter Constant	11000	1	

Table 40 - Encoder Input Parameters

4.4. Magnetic Input

All Magnetic Input setpoints are available to be configured through the NFC. The Magnetic Input is defined in section 1.1. Please refer there for information how these parameters are used.

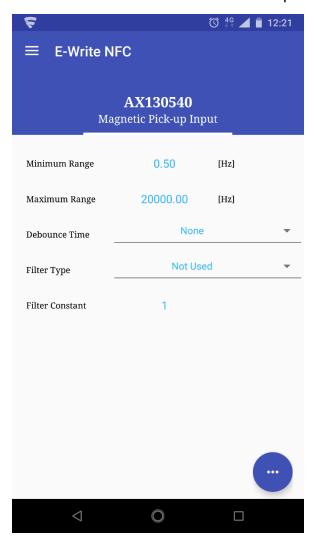


Figure 24 – Screen Capture of Magnetic Input Parameters

Name	Range	Default	Notes
Minimum Range	0.5 Hz to Maximum	0.5 Hz	
_	Range		
Maximum Range	From Minimum	20000 Hz	
G	Range to 20000 Hz		
Debounce Time	Drop List	None	See Table 2
Software Filter Type	Drop List	No Filtering	See Section 1.1
Software Filter Constant	11000	1	

Table 41 – Magnetic Input Parameters

4.5. Proportional Output

Most Proportional Output setpoints are available to be configured through the NFC. Instead of Source and Number pairs used in the Axiomatic EA to select inputs of the output block, NFC has single list of available inputs, namely 'Not Used', 'Universal Input 1 Measured', 'Universal Input 2 Measured', 'Magnetic Pick-up Input Measured' and 'Encoder Input Measured'. Other input settings selected with the Axiomatic EA are interpreted as 'Not Used'. The Proportional Output is defined in section 1.3. Please refer there for information how these parameters are used.

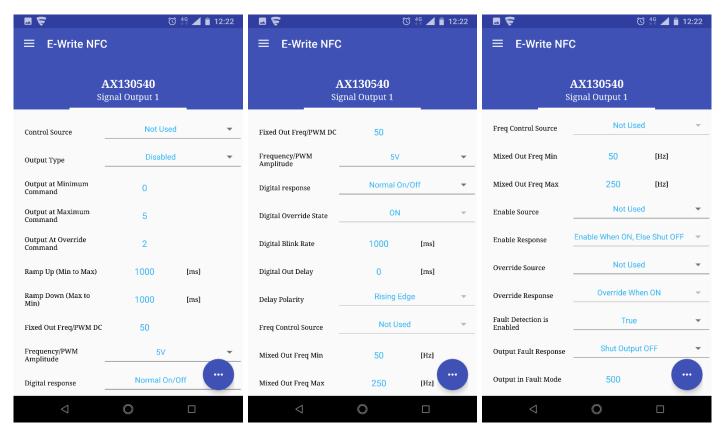
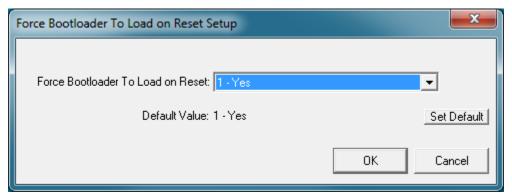


Figure 25 – Screen Capture of Proportional Output Parameters

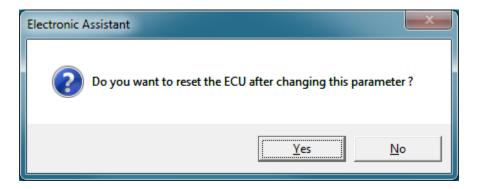
Name	Range	Default	Notes
Control Source	Drop List	Not Used	See Section 4.5
Output Type	Drop List	Disabled	See Table 6
Output At Minimum Command	Limit to Limit	Depends on Output Type	
Output At Maximum Command	Limit to Limit	Depends on Output Type	
Output At Override Command	Limit to Limit	Depends on Output Type	
Ramp Up (Min to Max)	0 to 10 000ms	0ms	
Ramp Down (Max to Min)	0 to 10 000ms	0ms	
Fixed Output Frequency/PWM	0.1 to 100 %	50 %	
Duty Cycle	0.1 Hz to 50 000 Hz	250 Hz	
Frequency/PWM Amplitude	Drop List	0 to 5 V	
Digital Response	Drop List	Normal On/Off	See Table 7
Digital Override State	Drop List	ON	
Digital Blink Rate	100 to 5000 ms	1000ms	
Digital Out Delay	0 to 60000 ms	0ms	
Delay Polarity	Drop List	Rising Edge	See Table
			8 Table 8 –
			Delay Polarity
Frequency Control Source	Drop List	Control not used	See Table 21
Mixed Output Frequency Min	0.1 Hz to 50 000 Hz	50.0 Hz	
Mixed Output Frequency Min	0.1 Hz to 50 000 Hz	250.0 Hz	
Enable Source	Drop List	Control not used	See Section 4.5
Enable Response	Drop List	Enable When On, else Shutoff	See Table 9
Override Source	Drop List	Control not used	See Section 4.5
Override Response	Drop List	Override When On	See Table 10
Fault Detection is Enabled	Drop List	True	
Output Fault Response	Drop List	Shutoff Output	See Table 11
Output in Fault Mode	Limit to Limit	Depends on Output Type	

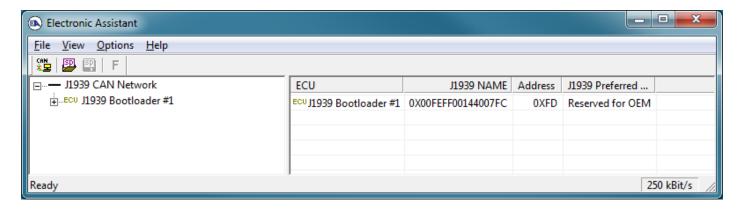
Table 42 – Proportional Output Parameters

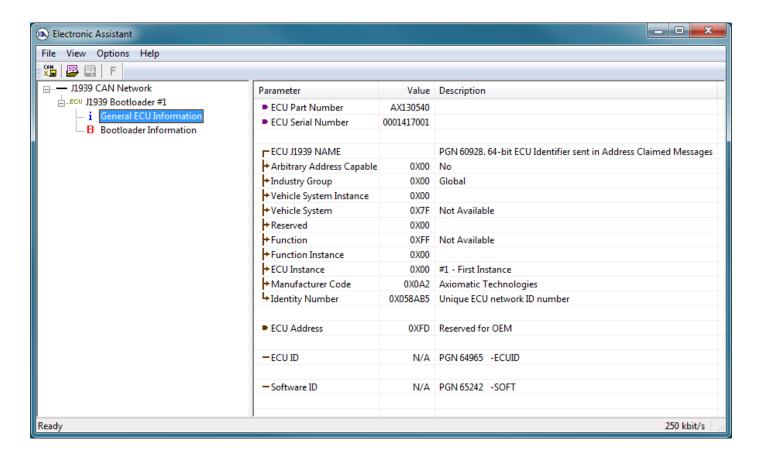
5. REFLASHING OVER CAN WITH THE AXIOMATIC EA BOOTLOADER


The AX130540 can be upgraded with new application firmware using the **Bootloader Information** section. This section details the simple step-by-step instructions to upload new firmware provided by Axiomatic onto the unit via CAN, without requiring it to be disconnected from the J1939 network.

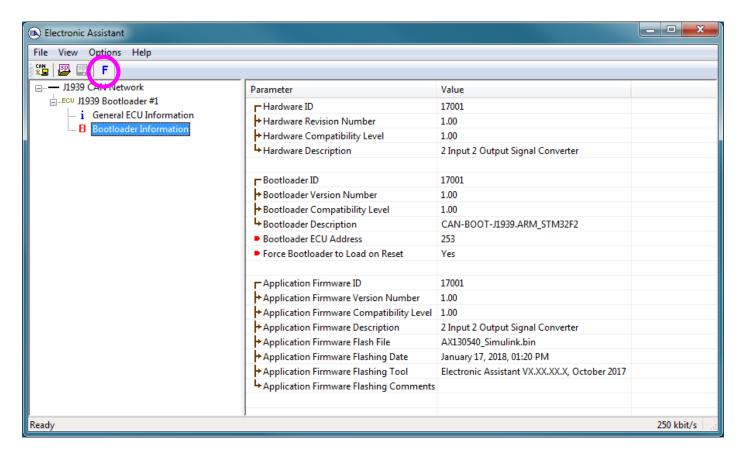
Note: To upgrade the firmware use Axiomatic Electronic Assistant V4.5.53.0 or higher.

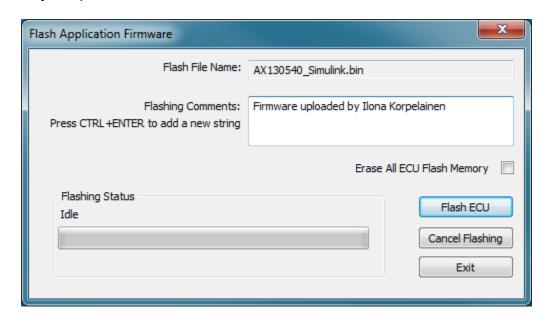

1. When the Axiomatic EA first connects to the ECU, the **Bootloader Information** section will display the following information.


2. To use the bootloader to upgrade the firmware running on the ECU, change the variable "Force Bootloader To Load on Reset" to Yes.

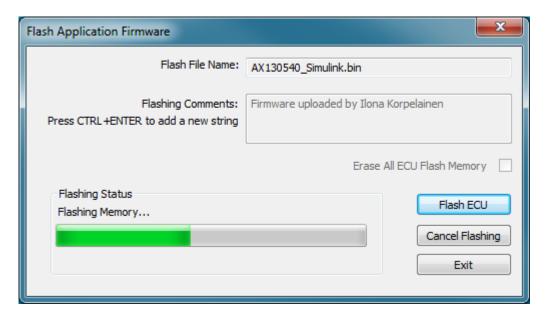


3. When the prompt box asks if you want to reset the ECU, select Yes.

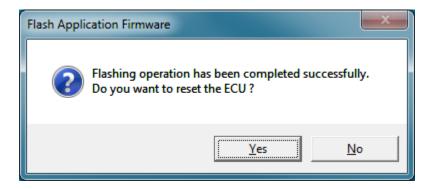

4. Upon reset, the ECU will no longer show up on the J1939 network as an AX130540 but rather as **J1939 Bootloader #1**.


Note that the bootloader is NOT Arbitrary Address Capable. This means that if you want to have multiple bootloaders running simultaneously (not recommended) you would have to manually change the address for each one before activating the next, or there will be address conflicts. And only one ECU would show up as the bootloader. Once the 'active' bootloader returns to regular functionality, the other ECU(s) would have to be power cycled to re-activate the bootloader feature.

5. When the **Bootloader Information** section is selected, the same information is shown as when it was running the AX130540 firmware, but in this case the <u>F</u>lashing feature has been enabled.


- 6. Select the <u>F</u>lashing button and navigate to where you had saved the <u>AX130540_Simulink.bin</u> file sent from Axiomatic. (Note: only binary (.bin) files can be flashed using the Axiomatic EA tool.)
- 7. Once the Flash Application Firmware window opens, you can enter comments such as "Firmware upgraded by [Name]" if you so desire. This is not required, and you can leave the field blank if you do not want to use it.

Note: You do not have to date/time-stamp the file, as this is done automatically by the Axiomatic EA tool when you upload the new firmware.



WARNING: Do not check the "Erase All ECU Flash Memory" box unless instructed to do so by your Axiomatic contact. Selecting this will erase ALL data stored in non-volatile flash including the calibration from Axiomatic factory testing. It will also erase any configuration of the setpoints that might have been done to the ECU and reset all setpoints to their factory defaults. By leaving this box unchecked, none of the setpoints will be changed when the new firmware is uploaded.

A progress bar will show how much of the firmware has been sent as the upload progresses. The more traffic there is on the J1939 network, the longer the upload process will take.

Once the firmware has finished uploading, a message will pop up indicating the successful operation. If you select to reset the ECU, the new version of the AX130540 application will start running, and the ECU will be identified as such by the Axiomatic EA. Otherwise, the next time the ECU is power-cycled, the AX130540 application will run rather than the bootloader function.

Note: If at any time during the upload the process is interrupted, the data is corrupted (bad checksum) or for any other reason the new firmware is not correct, i.e. bootloader detects that the file loaded was not designed to run on the hardware platform, the bad or corrupted application will not run. Rather, when the ECU is reset or power-cycled the **J1939 Bootloader** will continue to be the default application until valid firmware has been successfully uploaded into the unit.

APPENDIX A - TECHNICAL SPECIFICATION

Technical Specifications:Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.

Power Supply

Power Supply Input	12 Vdc or 24 Vdc nominal 936 Vdc power supply range Shutdown voltage is 8.0 Vdc.
Protection	Reverse polarity protection Overvoltage protection is up to 45 V.

Inputs

puts	O Universal Circal I	nnuta			
Inputs	2 Universal Signal Inputs User programmable as Voltage, Current, Resistive, Frequency, RPM, PWM or Digital				
		e as voltage, Current,	Resistive, Fre	equency, RPM, PVVM or L	
	signal inputs types. Refer to Table 1.0.				
		Concer Innut			
	1 Magnetic Pick Up 1 Encoder Input	Sensor input			
Mannatia Diak Un Canan		\ - -			
Magnetic Pick Up Sensor	Range: 0.5 Hz to 20				
Input	Amplitude: 100 mV				
Encoder Input		e A and B, increment	al encoder inp	out.	
	Range: 0.5 Hz to 15				
	Amplitude: up to +V	supply			
Input Grounds	1 provided				
Protection		ted against short to 0			
	All inputs, except cu	ırrent inputs, are prot	ected against	shorts to Nominal Vps (3	
Input Accuracy and	Input Type	Input Panga	Accuracy	Resolution	
Resolution	Input Type	Input Range 0-5V	+/- 0.5%	1 mV	
	Voltage				
		0-10V -5V to 5V	+/- 0.5% +/- 0.5%	1 mV 1 mV	
		* * ** **			
	0	-10V to 10V	+/- 0.5%	1 mV	
	Current	0(4)-20mA	+/-1%	1 μA	
	2	0-200mA	+/-1%	1 μΑ	
	Resistive	30-250kΩ	+/-1%	1 Ω for lower ranges	
		0.511.5011	10.001	1 kΩ for higher ranges	
	Frequency	0.5Hz-50Hz	+/-0.3%	0.01 Hz	
		10Hz-1kHz	+/-0.3%	0.1 Hz	
		100Hz-20kHz	+/-0.3%	1 Hz	
	PWM	Low Frequency	+/-0.1%	0.01%	
		High Frequency	+/-0.1%	0.01%	

Table 1.0 -User Program	mable Universal Inputs					
Analog & Digital Input Functions	Voltage Input, Current Input, Re	sistive Inpu	t or Digital Inp	ut		
Voltage Input	0-5 V (Impedance 110 kΩ) 0-10 V (Impedance 130 kΩ) +/- 5V (Impedance 110 kΩ) +/- 10V (Impedance 130 kΩ)					
Current Input	0-200 mA (Impedance 5 Ω); 1V 0-20 mA (Impedance 249 Ω) 4-20 mA (Impedance 249 Ω)	max.				
Resistive	20 Ohms to 250 kOhms Self-calibrating					
Digital Input Level	Accepts 5 V TTL Accepts up to Vps Threshold: Low <1 V High >2.2 V	Accepts 5 V TTL Accepts up to Vps Threshold: Low <1 V				
Digital Input	1 M Ω Impedance or Active High or Active Low with 10 kOhm pull-up or pull-dow					
Timer Input Functions	PWM Input, Frequency Input, RF	PM Input				
PWM Input		Low Frequency (0.50 Hz to 1 kHz) High Frequency (100 Hz to 10 kHz) 0 to 100% D.C.				
Frequency/RPM Input	0.5 Hz to 50 Hz; 10 Hz to 1 kHz; or 100 Hz to 20 kHz					
Maximum and Minimum	Characteristic	Min	Max	Units		
Ratings	Power Supply	9	36	V dc		
	Voltage Input	0	36	V dc		
	Current Input 0(4)-20 mA	0	12	Vdc		
	Current Input 0-200 mA	0	1V	Vdc		
	Resistive Input	30	250 000	Ω		
	Digital Input	0	36	Vdc		
	PWM Duty Cycle	0	100	%		
	PWM Low Frequency	10	1 000	Hz		
	PWM High Frequency	100	10 000	Hz		
	PWM Voltage pk - pk	0	36	V dc		
	RPM Frequency	0.5	20 000	Hz		

Outputs

Outputs	2 Isolated Universal Signal Outputs Voltage, Current or PWM The outputs are user selectable as follows. Refer to Table 2.0.							
	Table 2.0: Programmable Outputs							
	Analog Voltage		Voltage O					
	Current Outputs:		0-5 Vdc, 0-10 Vdc, +/- 5Vdc or +/- 10Vdc Maximum load is 50 mA. Current Output: 0-20 mA or 4-20 mA Maximum load resistance is < 500 Ohms. Compliance Voltage is 10V. 0.1 Hz to 20 kHz 0-100% D.C. 5 V or 12 V Amplitude Push pull output Maximum load is 50 mA. Over-current protection (50 mA) Digital Level Digital ON/OFF 5 V or 12 V Amplitude Maximum load is 50 mA.					
	PWM, Frequency or Mixed PWM/Frequency Output:							
							Digital Output:	
	Output Accuracy and Resolution	Output Type					Output Range	
	Voltage	0-5V		+/- 0.5%	1.2 mV	+/- 1%		
		0-10V +/- 5Vdc +/- 10Vdc		+/- 0.5%	2.44 mV	+/- 1%		
				+/- 0.5%	2.44 mV	+/- 1%		
				+/- 0.5%	4.88 mV	+/- 1%		
	Current	0(4)-20		+/- 0.5%	4.88 µA	+/- 2%		
	Digital On/0		f	N/A	N/A	N/A		
	Frequency			+/- 0.1%	0.01 – 40 Hz	+/- 0.5%		
	PWM		requency	+/- 0.5%	0.01%	+/- 0.8%		
		High F	requency	+/- 0.5%	0.01%	+/- 0.8%		
Voltage Reference		+5V, +/- 0.5%, 50 mA Ground is shared with Input Grounds.						
Protection for Output Terminals	Fully protected a	Fully protected against short circuit to output ground. Unit will fail safe in the case of a short circuit condition, self-recovering when the short i						

General Specifications

General Specifications	§				
Microprocessor	STM32F205VGT7 32-bit, 1MByte flash memory				
Isolation	300 Vrms 4-way Digital Isolation (Power, Inputs, Outputs and CAN are isolated from each other.)				
Typical Quiescent Current	125 mA@ 12Vdc; 65 mA @ 24Vdc typical				
Response Time	30 mSec				
LED Indicators	2 bicolour LED's (Red and Green) Power, heartbeat, input fault indication and output fault indication				
Simulink® Block Library	Model AX130540 was developed using Simulink [®] . Simulink [®] is a model-based design tool from Mathworks [®] .				
CAN Communications	1 Isolated CAN port (SAE J1939) (CANopen® on request) Models: AX130540 – Auto Baud Rate (250 kbps, 500 kbps, 1 Mbps)				
NFC Communications	Near Field Communication Full-duplex Data rate: 106 kbit/s Complies with ISO1443 (RF protocol), ISO13239, and ISO7816 Protected and secure configuration				
User Interface	E-WRITE NFC Application is available from the Google Play Store for simple configurations.				
Software Reflashing	Axiomatic Electronic Assistant KIT, P/Ns: AX070502 or AX070506K				
User Interface	The AX130540 setpoints can be viewed and programmed using the standard J1939 memory access protocol through the CAN port and the PC-based Axiomatic Electronic Assistant. The EA can store all setpoints in one setpoint file and then flash them into the unit in one operation. The setpoint file is created and stored on disk using a command Save Setpoint File from the EA menu or toolbar. The user then can open the setpoint file, view or print it and flash the setpoint file into the AX130540. The Axiomatic Electronic Assistant KIT, P/Ns: AX070502 or AX070506K, for Windows operating systems comes with a royalty-free license for use on multiple computers. It includes an Axiomatic USB-CAN converter to link the device's CAN port to a Windows-based PC.				
Operating Conditions	-40 to 85 °C (-40 to 185 °F)				
Storage Temperature	-55 to 125 °C (-67 to 257°F)				
Protection	IP20				
Weight	0.30 lb. (0.136 kg)				
Enclosure and Dimensions	Phoenix Contact: ME MAX 22,5 G 2-2 KMGY – 2713638 Polyamide, UL94V0, cULus recognized, China RoHS DIN rail TH 35-7.5 99 x 114.5 x 22.5 x 99 mm (L x H x W x D) Refer to Figure 2.0.				
Electrical Connections	4 Phoenix Contact PSPT 2,5/ 4-ST KMGY spring clamp connectors Accepts 24-14 AWG wire. Refer to Table 3.0 and Figure 2.0. for pin out.				
Installation	DIN rail mount TH 35-7.5				
Network Termination	It is necessary to terminate the network with external termination resistors. The resistors are 120 Ohm, 0.25W minimum, metal film or similar type. They should be placed between CAN_H and CAN_L terminals at both ends of the network.				

Dimensional Drawing

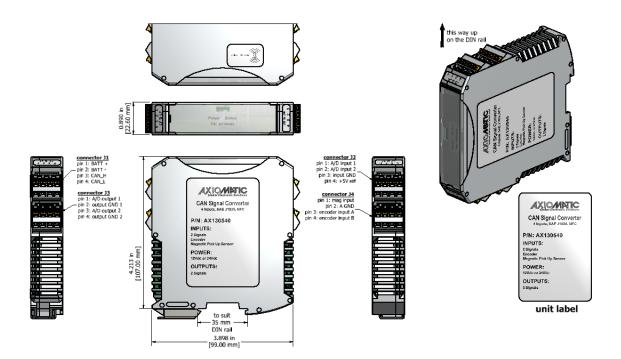


Table 43 - Pin Out

Power and CAN (J1)		Outputs	Outputs (J3)		Inputs (J2)		Reference and GNDs (J4)	
PIN #	Function	PIN#	Function	PIN#	Function	PIN#		
1	BATT +	1	Output 1+	1	Universal Signal Input 1	1	Magnetic Pick Up Input	
2	BATT –	2	Output 1-	2	Universal Signal Input 2	2	Common Analog GND	
3	CAN_H	3	Output 2+	3	Input GND	3	Encoder Input A	
4	CAN_L	4	Output 2-	4	+5V Reference	4	Encoder Input B	

 ${\tt CANopen@\ is\ a\ registered\ community\ trademark\ of\ CAN\ in\ Automation\ e.V.}$ Simulink@ is\ a\ registered\ trademark\ of\ The\ Mathworks,\ Inc.}

OUR PRODUCTS

AC/DC Power Supplies

Actuator Controls/Interfaces

Automotive Ethernet Interfaces

Battery Chargers

CAN Controls, Routers, Repeaters

CAN/WiFi, CAN/Bluetooth, Routers

Current/Voltage/PWM Converters

DC/DC Power Converters

Engine Temperature Scanners

Ethernet/CAN Converters, Gateways, Switches

Fan Drive Controllers

Gateways, CAN/Modbus, RS-232

Gyroscopes, Inclinometers

Hydraulic Valve Controllers

Inclinometers, Triaxial

I/O Controls

LVDT Signal Converters

Machine Controls

Modbus, RS-422, RS-485 Controls

Motor Controls, Inverters

Power Supplies, DC/DC, AC/DC

PWM Signal Converters/Isolators

Resolver Signal Conditioners

Service Tools

Signal Conditioners, Converters

Strain Gauge CAN Controls

Surge Suppressors

OUR COMPANY

Axiomatic provides electronic machine control components to the off-highway, commercial vehicle, electric vehicle, power generator set, material handling, renewable energy and industrial OEM markets. We innovate with engineered and off-the-shelf machine controls that add value for our customers.

QUALITY DESIGN AND MANUFACTURING

We have an ISO9001:2015 registered design/manufacturing facility in Canada.

WARRANTY, APPLICATION APPROVALS/LIMITATIONS

Axiomatic Technologies Corporation reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process at https://www.axiomatic.com/service/.

COMPLIANCE

Product compliance details can be found in the product literature and/or on axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.

SAFE USE

All products should be serviced by Axiomatic. Do not open the product and perform the service yourself.

This product can expose you to chemicals which are known in the State of California, USA to cause cancer and reproductive harm. For more information go to www.P65Warnings.ca.gov.

SERVICE

All products to be returned to Axiomatic require a Return Materials Authorization Number (RMA#) from sales@axiomatic.com. Please provide the following information when requesting an RMA number:

- Serial number, part number
- Runtime hours, description of problem
- · Wiring set up diagram, application and other comments as needed

DISPOSAL

Axiomatic products are electronic waste. Please follow your local environmental waste and recycling laws, regulations and policies for safe disposal or recycling of electronic waste.

CONTACTS

Axiomatic Technologies Corporation 1445 Courtneypark Drive E. Mississauga, ON CANADA L5T 2E3

TEL: +1 905 602 9270 FAX: +1 905 602 9279 www.axiomatic.com sales@axiomatic.com Axiomatic Technologies Oy Höytämöntie 6 33880 Lempäälä FINLAND TEL: +358 103 375 750

www.axiomatic.com salesfinland@axiomatic.com