

USER MANUAL UMAX032000 USER MANUAL UMAX032050 Version 2.1

18/16 CELL BATTERY SUBSTACK VOLTAGE MONITOR

With SAEJ1939®

USER MANUAL

P/N: AX032000 – 18-Cell Battery Monitor P/N: AX032050 – 16-Cell Battery Monitor

Axiomatic Technologies Oy Höytämöntie 6 33880 LEMPÄÄLÄ, Finland Tel. +358 103 375 750 salesfinland@axiomatic.com www.axiomatic.fi Axiomatic Technologies Corporation 1445 Courtneypark Dr. E. Mississauga, ON Canada L5T 2E3 Tel. 1 905 602 9270 sales@axiomatic.com www.axiomatic.com

ACCRONYMS

ACK	Positive Acknowledgement	(from SAE J1939 standard)
CAN	Controller Area Network	
DM	Diagnostic Message	(from SAE J1939 standard)
DTC	Diagnostic Trouble Code	
EA	The Axiomatic Electronic Assis	stant (A Service Tool for Axiomatic ECUs)
ECU	Electronic Control Unit	(from SAE J1939 standard)
FMI	Failure Mode Identifier	
NAK	Negative Acknowledgement	(from SAE J1939 standard)
PDU1	A format for messages that are or global	e to be sent to a destination address, either specific (from SAE J1939 standard)
PDU2	A format used to send informat Extension technique and does	tion that has been labeled using the Group not contain a destination address.
PGN	Parameter Group Number	(from SAE J1939 standard)
PropA	Message that uses the Proprie	etary A PGN for peer-to-peer communication
PropB	Message that uses a Proprieta	ary B PGN for broadcast communication
PWM	Pulse Width Modulation	
OC	Occurrence Count	
SPN	Suspect Parameter Number	(from SAE J1939 standard)
VPS	Voltage Power Supply	

Note:

The Axiomatic Electronic Assistant KIT may be ordered as P/N: AX070502 or AX070506K

TABLE OF CONTENTS

1. G	ENERAL INFORMATION	4
1.1. 1.2. 1.3. 1.4. 1.5. 1.6.	 Description of Battery Substack Voltage Monitor Cell Group Input Function Block Cell Input Function Block Diagnostic Input Function Block CAN Transmit Function Block CAN Receive Function Block 	
2. O	Introduction to Supported Messages	13 13
2.2. 2.2. 2. 2.	Name, Address and Software ID .2.3. J1939 Name .2.3. ECU Address	13
2.	.2.3. Software Identifier	14
3. E	CU SETPOINTS ACCESSED WITH THE AXIOMATIC ELECTRONIC ASSIST	ANT16
3.1. 3.2. 3.3. 3.4. 3.5.	 J1939 Network Setpoints Cell Group Input Setpoints Cell Input Setpoints Diagnostic Input Setpoints CAN Transmit Setpoints 	
3.6.	CAN Receive Setpoints	20
4. R	REFLASHING OVER CAN WITH THE AXIOMATIC EA BOOTLOADER	22
5. IN	NSTALLATION INSTRUCTIONS	27
6. T	ECHNICAL SPECIFICATIONS ERROR! BOOKMARK N	OT DEFINED.
6.1. 6.2.	Input Specifications General Specifications	29 29
7. V	ERSION HISTORY	

1. GENERAL INFORMATION

1.1. Description of Battery Substack Voltage Monitor

The Battery Substack Voltage Monitor (BATT-MON) Controller is designed to provide a J1939 CAN network interface for a controller to monitor and control up to 18 battery cells for back-up power or fuel systems.

Each battery cell can measure up to 5V, allowing the BATT-MON Controller to monitor up to 90V in total. In addition to monitoring the voltage of a cell, the BATT-MON Controller has a configurable cell balancing algorithm which is automated by default but allows for partial to full user-control.

For systems involving more than 18 cells and monitoring higher than 90V, multiple AX0320x0 units can be stacked in series to expand the monitoring coverage.

Figure 1 – Hardware Functional Block Diagram

The cell voltages are sampled within 25ms and are available for transmission on a single CAN port at a 250kHz baud rate.

The BATT-MON Controller can be ordered using the following part numbers depending on the application.

AX032000	18-Cell Battery Monitor
AX032050	16-Cell Battery Monitor

1.2. Cell Group Input Function Block

The Cell Group Input function block is used to configure data that applies to the function of all the cells as a group.

The **Monitor Only Setting** parameter allows for the features of the BATT-MON to be simplified so that no user control or self-balancing is implemented, and the controller only acts as a monitor. With

this setting set to true cells cannot be controlled by CAN Receive messages and cannot be set to discharge automatically.

The **Cell Overvoltage** parameter controls how much voltage each individual cell can store before it will discharge. This value only applies to cells which are enabled and under automated control. If a cell's voltage is below this value it will be in a charging state, and if its voltage is above this value it will be in a discharging state. The discharge rate of a cell is determined in proportion to the cell overvoltage value, and is calculated as such:

Discharge Rate = $\frac{\text{Cell Voltage - Overvoltage}}{4.5 - \text{Overvoltage}}$

The Discharge Rate is then rounded up to the nearest 1/15 (6.67%) increment and applied to the cell.

In addition to each cell being in a discharging state, cells can be flagged as having undervoltage. The **Cell Undervoltage** parameter sets a global value for each cell to be compared against. If a cell's voltage is below the set Undervoltage value, the cell's corresponding flag is set and will be reported in a Diagnostic Message (DM1) based on the settings provided in diagnostic section of that cell's Cell Input function block.

The **VPS Overvoltage** & **VPS Undervoltage** parameters are used as values to flag when there is a Total Bank Voltage (V+/V-) error. When flagged, a DM1 message will be produced based on the diagnostic information set in the VPS Overvoltage Fault and VPS Undervoltage Fault function blocks. Similarly, the **Shutdown Temperature** parameter is used to flag when there is an Internal Temperature error. An error will trigger a DM1 message based on the settings provided in the Over Temperature Fault function block.

The **Rx Timeout Discharge Setting** parameter determines how a cell will operate if it is being usercontrolled and the CAN Receive associated with that cell as a PWM Value Source times out. Table 1 shows the possible settings.

Value	Meaning	
0	Set Discharge Rate(s) to 0	
1	Automated Discharge Control	
2	Revert to last stored value(s)	
Table 1 – Rx Timeout Discharge Settings		

The "Set Discharge Rate(s) to 0" setting will set the discharge rate of all user-controlled cells with CAN Receive sources that have timed out to 0 (they will not discharge). The "Automated Discharge Control" setting will make the user-controlled cells with CAN Receive sources that have timed out operate as though they were under automated control (discharge proportionally to the set Cell Overvoltage). The "Revert to last stored value(s)" setting will set the discharge rate of all user-controlled cells with CAN Receive sources that have timed out to the last value that was sent via the cell's respective CAN Receive before the timeout occurred. If a new CAN Receive message is sent to clear the Lost Communication error, the discharge rate will return to being User-Controlled, and the setting will only apply while the CAN Receive Timeout is active.

The **Open Wire Check Period** parameter determines how often open wire checking is performed within the regular run cycle of the balancing algorithm. When this parameter is set to 0 seconds, open wire checking is not performed. Having the period set as low as possible (but above 0 seconds) will have a greater effect on the regular performance of the monitor. Regular cell

readings are sampled within 25ms but while checking for open wires, cell readings are sampled at a rate of 200ms. So, at the start of a new period, the monitor will perform 4 conversions at 200ms to detect possible open wires at the cell inputs, and then revert to the regular 25ms sample rate for the remainder of the period. As such it is recommended to set the period as large as possible, or to 0, if keeping a more frequent sampling rate is more important than checking for open inputs.

If true, the **Block Empty DM1 Messages** parameter will block DM1 messages with no data, or with DM1 messages that have a set SPN of 0x00000. If false, all DM1 messages, including ones that report no data, will continue to be sent at their normal rate of 1 second.

1.3. Individual Cell Input Function Block

The Cell Input functions blocks for each individual cell are used to configure the operation of an individual cell, and setup the diagnostic message for that cell.

The first parameter, **Enable Cell**, is the most important in determining how the cell will operate. Disabled cells will not have their voltage reported, cannot be controlled by the user, and will report a zero value in any CAN Transmit message involved with that cell.

If a cell is enabled, it can be configured to one of two settings through the **Discharge Control** parameter, as shown in Table 2.

Value	Meaning
0	Automated
1	User-Controlled

Table 2 – Discharge Control Options

A cell with a setting of *Automated* will have its discharge rate calculated automatically based on the set Cell Overvoltage set in the Cell Group function block. A *User-Controlled* cell will be in a discharging state and will be set to a value given by its CAN Receive source.

If a cell is both enabled and set to User-Controlled, the **Discharge Value Source** parameter will control which CAN Receive message will be used as the source for that cell's discharge value. Once set, the discharge rate value will be determined by taking the received data as a percentage of the set Data Minimum and Data Maximum parameters of that CAN Receive and rounding up to the nearest 1/15 (6.67%) increment.

Discharge Rate = $\frac{\text{CAN Receive Data}}{\text{Data Maximum - Data Minimum}}$

The remaining setpoints in this function block control the settings of the diagnostic message associated with the cell and are explained along with the other Diagnostic Input function blocks in the following section.

1.4. Diagnostic Input Function Blocks

The Diagnostic Input function blocks are used to setup the diagnostic messages for the controller.

The 5 types of diagnostics supported by the BATT-MON Controller are shown in Table 3.

Function Block	Minimum Threshold	Maximum Threshold
Cell Voltage Fault	Cell Undervoltage	N/A

VPS Undervoltage Fault	VPS Undervoltage	N/A
VPS Overvoltage Fault	N/A	VPS Overvoltage
Over Temperature Fault	N/A	Temperature Shutdown
Lost Communication	N/A	Received Message
Fault		Timeout (any)

Table 3 – Fault Detection Thresholds

If and only if the **Event Generates a DTC in DM1** parameter is set to true will the other setpoints in the function block be enabled. They are all related to the data that's is sent to the J1939 network as part of the DM1 message, Active Diagnostic Trouble Codes.

A Diagnostic Trouble Code (DTC) is defined by the J1939 standard as a 4-byte value which is a combination of:

SPN	Suspect Parameter Number	(first 19 bits of the DT	C, LSB first)
FMI	Failure Mode Identifier	(next 5 bits of the DTC	c)
CM	Conversion Method	(1 bit, always set to 0)	
OC	Occurrence Count	(7 bits, number of time	es the fault has happened)
In addition to	supporting the DM1 message, the	BATT-MON Controller als	so supports
DM2	Previously Active Diagnostic Troub	ole Codes	Sent only on request
DM3	Diagnostic Data Clear/Reset of Pre	eviously Active DTCs	Done only on request
DM11	Diagnostic Data Clear/Reset for Ac	ctive DTCs	Done only on request

So long as even one Diagnostic function block has **Event Generates a DTC in DM1** set to true, the BATT-MON Controller will send the DM1 message every one second, regardless of whether there are any active faults, as recommended by the standard. While there are no active DTCs, the BATT-MON will send the "No Active Faults" message. If a previously active DTC becomes inactive, a DM1 will be sent immediately to reflect this. As soon as the last active DTC goes inactive, it will send a DM1 indicating that there are no more active DTCs.

If there is more than on active DTC at any given time, the regular DM1 message will be sent using a multipacket Broadcast Announce Message (BAM). If the controller receives a request for a DM1 while this is true, it will send the multipacket message to the Requester Address using the Transport Protocol (TP).

At power up, the DM1 message will not be broadcast until after a 5 second delay. This is done to prevent any power up or initialization conditions from being flagged as an active error on the network.

The Diagnostic function block has a setpoint **Event Cleared Only by DM11**. By default, this is set to false, which means that as soon as the condition that caused an error flag to be set goes away, the DTC is automatically made Previously Active, and is no longer included in the DM1 message. However, when this setpoint is set to true, even if the flag is cleared, the DTC will not be made inactive, so it will continue to be sent on the DM1 message. Only when a DM11 has been requested will the DTC go inactive. This feature may be useful in a system where a critical fault needs to be clearly identified as having happened, even if the conditions that caused it went away.

In addition to all the active DTCs, another part of the DM1 message is the first byte, which reflects the Lamp Status. Each Diagnostic function block has the setpoint **Lamp Set by Event in DM1** which determines which lamp will be set in this byte while the DTC is active. The J1939 standard defines the lamps as '*Malfunction*', '*Red Stop*', '*Amber, Warning*' or '*Protect*'. By default, the '*Amber, Warning*' lamp is typically the one set by any active fault.

By default, every Diagnostic function block has associated with it a proprietary SPN. However, this setpoint **SPN for Event used in DTC** is fully configurable by the user should they wish it to reflect a standard SPN define in J1939-71 instead. If the SPN is change, the OC of the associate error log is automatically reset to zero.

Every Diagnostic function block also has associated with it a default FMI. The only setpoint for the user to change the FMI is **FMI for Event used in DTC**, even though some Diagnostic function blocks can have both high and low errors. In those cases, the FMI in the setpoint reflects that of the low-end condition, and the FMI used by the high fault will be determined per Table 4. If the FMI is changed, the OC of the associate error log is automatically reset to zero.

FMI for Event used in DTC – Low Fault	Corresponding FMI used in DTC – High Fault
FMI=1, Data Valid But Below Normal	FMI=0, Data Valid But Above Normal
Operational Range – Most Severe Level	Operational Range – Most Severe Level
FMI=4, Voltage Below Normal, Or	FMI=3, Voltage Above Normal, Or Shorted To
Shorted To Low Source	High Source
FMI=5, Current Below Normal Or Open	FMI=6, Current Above Normal Or Grounded
Circuit	Circuit
FMI=17, Data Valid But Below Normal	FMI=15, Data Valid But Above Normal
Operating Range – Least Severe Level	Operating Range – Least Severe Level
FMI=18, Data Valid But Below Normal	FMI=16, Data Valid But Above Normal
Operating Range – Moderately Severe	Operating Range – Moderately Severe Level
Level	
FMI=21, Data Drifted Low	FMI=20, Data Drifted High

 Table 4 – Low Fault FMI versus High Fault FMI

If the FMI used is anything other than one of those in Table 4, then both the low and the high faults will be assigned the same FMI. This condition should be avoided, as the log will still use different OC for the two types of faults, even though they will be reported the same in the DTC. It is the user's responsibility to make sure this does not happen.

When the fault is linked to a DTC, a non-volatile log of the occurrence count (OC) is kept. As soon as the controller detects a new (previously inactive) fault, it will start decrementing the **Delay Before Sending DM1** timer for the Diagnostic function block. If the fault has remained present during the delay time, then the controller will set the DTC to active, and it will increment the OC in the log. A DM1 will immediately be generated that includes the new DTC. The timer is provided so that intermittent faults do not overwhelm the network as the fault comes and goes, since a DM1 message would be sent every time the fault shows up or goes away.

1.5. CAN Transmit Function Block

The CAN Transmit function block is used to send data from the BATT-MON to the J1939 network.

Normally, to disable a transmit message, the **Transmit Repetition Rate** is set to zero. However, should the message share its Parameter Group Number (PGN) with another message, this is not necessarily true. In the case where multiple messages share the same **Transmit PGN**, the repetition rate selected in the message with the LOWEST number will be used for ALL the messages that use that PGN.

By default, all messages are sent on Proprietary B PGNs as broadcast messages. If all the data is not necessary, disable the entire message by setting the lowest channel using that PGN to zero. If some of the data is not necessary, simply change the PGN of the superfluous channel(s) to an unused value in the Proprietary B range.

Since the defaults are PropB messages, the **Transmit Message Priority** is always initialized to 6 (low priority) and the **Destination Address (for PDU1)** setpoint is not used. This setpoint is only valid when a PDU1 PGN has been select, and it can be set either to the Global Address (0xFF) for broadcasts or sent to a specific address as setup by the user.

Enabling the **Override Source Address**, allows the **Source Address** of the J1939 Identifier to be changed to any value between 0...255.

The **Transmit Data Size**, **Transmit Data Index in Array (LSB)**, **Transmit Bit Index in Byte** (LSB), **Transmit Resolution** and **Transmit Offset** can all be used to map the data to any SPN supported message by the J1939 standard from any **Data Source** of the Transmit function block. Table 5 exhibits the possible **Data Sources** for use in CAN Transmits.

	18-Cell BATT-MON	16-Cell BATT-MON	
Value	CAN Transmit Data Source		
0	Control Not Used	Control Not Used	
1	Cell Voltage 1	Cell Voltage 1	
2	Cell Voltage 2	Cell Voltage 2	
3	Cell Voltage 3	Cell Voltage 3	
4	Cell Voltage 4	Cell Voltage 4	
5	Cell Voltage 5	Cell Voltage 5	
6	Cell Voltage 6	Cell Voltage 6	
7	Cell Voltage 7	Cell Voltage 7	
8	Cell Voltage 8	Cell Voltage 8	
9	Cell Voltage 9	Cell Voltage 9	
10	Cell Voltage 10	Cell Voltage 10	
11	Cell Voltage 11	Cell Voltage 11	
12	Cell Voltage 12	Cell Voltage 12	
13	Cell Voltage 13	Cell Voltage 13	
14	Cell Voltage 14	Cell Voltage 14	
15	Cell Voltage 15	Cell Voltage 15	
16	Cell Voltage 16	Cell Voltage 16	
17	Cell Voltage 17	Total Bank Voltage (V+/V-)	

18	Cell Voltage 18	Internal Temperature	
19	Total Bank Voltage (V+/V-)	Discharging Cells Indicator	
20	Internal Temperature	Open Wire Indicator	
21	Discharging Cells Indicator	Total Summed Voltage	
22	Open Wire Indicator		
23	Total Summed Voltage		

Table 5 – CAN Transmit Data Sources

The *Cell Voltage* data sources give the 0 to 5V reading for each cell in terms of mV (a resolution of 0.001). The *Total Bank Voltage* (V+/V-) and *Internal Temperature* data sources have ranges of 0 to 90V and -45 to 150°C respectively, with the temperature reading also being offset by -45°C, and both sources having a resolution of 0.01. The *Discharging Cells Indicator* data source gives an 18-bit value with each bit representing whether its corresponding cell is currently discharging. For example, bit 0 (the least significant bit) will be 1 when Cell 1 is discharging, and 0 when it is not, and bit 17 (the most significant bit) follows the same logic but with Cell 18. The *Open Wire Indicator* follows the same bit formatting as the discharge indicator, but instead reports a 1 when there is an open wire detected on the corresponding cell input.

The BATT-MON supports up to 10 unique CAN Transmit Messages, all of which can be programmed to send any available data to the CAN network. Each CAN Transmit Message is setup to send data from 4 configurable sources, and if each of the 4 sources is used, each source can have a size as large as 2-Bytes. Only the first 6 CAN Transmit Messages are configured by default, with the remaining 4 set to unused; the default list is shown in Table 6 below.

CAN	18-Cell BATT-MON	١	16-Cell BATT-MON	N	
Transmit #	Default Transmit Data	Byte Position	Default Transmit Data	Byte Position	PGN
	Cell 1 Voltage	1 st	Cell 1 Voltage	1 st	
1	Cell 2 Voltage	3 rd	Cell 2 Voltage	3 rd	
1	Cell 3 Voltage	5 th	Cell 3 Voltage	5 th	UXFFUU
	Cell 4 Voltage	7 th	Cell 4 Voltage	7 th	
	Cell 5 Voltage	1 st	Cell 5 Voltage	1 st	
2	Cell 6 Voltage	3 rd	Cell 6 Voltage	3 rd	
2	Cell 7 Voltage	5 th	Cell 7 Voltage	5 th	UXFFU1
	Cell 8 Voltage	7 th	Cell 8 Voltage	7 th	
	Cell 9 Voltage	1 st	Cell 9 Voltage	1 st	0xFF02
2	Cell 10 Voltage	3 rd	Cell 10 Voltage	3 rd	
5	Cell 11 Voltage	5 th	Cell 11 Voltage	5 th	
	Cell 12 Voltage	7 th	Cell 12 Voltage	7 th	
	Cell 13 Voltage	1 st	Cell 13 Voltage	1 st	0xFF03
4	Cell 14 Voltage	3 rd	Cell 14 Voltage	3 rd	
4	Cell 15 Voltage	5 th	Cell 15 Voltage	5 th	
	Cell 16 Voltage	7 th	Cell 16 Voltage	7 th	
5	Cell 17 Voltage	1 st	Total Bank Voltage (V+/V-)	1 st	0xFF04
	Cell 18 Voltage	3 rd	Internal Temperature	3 rd	
	Total Bank Voltage (V+/V-)	5 th	Discharging Cells Indicator	5 th	
	Internal Temperature	7 th	Control Not Used		
6	Discharging Cells Indicator	1 st	Control Not Used		0xFF05

	Control Not Used		Control Not Used		
	Control Not Used		Control Not Used		
	Control Not Used		Control Not Used		
7 to 10	Control Not Used		Control Not Used		
	Control Not UsedControl Not Used		Control Not Used		UXFFUO
			Control Not Used		
	Control Not Used		Control Not Used		

Table 6 – Default CAN Transmit Messages

1.6. CAN Receive Function Block

The CAN Receive function block is designed to take any SPN from the J1939 network and use it as a control/enable/override source for any relay outputs or CAN Transmits.

The **Receive Message Enabled** is the most important setpoint associated with this function block and it should be selected first. Changing it will result in other setpoints being enabled/disabled as appropriate. By default, all receive messages are enabled.

Once a message has been enabled, a Lost Communication fault will be flagged if that message is not received within the **Receive Message Timeout** period. This will trigger a Lost Communication event if the cell input associated with the CAN Receive message is set to User Controlled under Rx Timeout Setting. In order to avoid timeouts on a heavily saturated network, it is recommended to set the period at least three times longer than the expected update rate. To disable the timeout feature, simply set this value to zero, in which case the received message will never timeout and will never trigger a Lost Communication fault.

By default, all control messages are expected to be sent to the BATT-MON on Proprietary B PGNs. However, should a PDU1 message be selected, the BATT-MON can be setup to receive it from any ECY by setting the **Specific Address that sends the PGN** to the Global Address (0xFF). If a specific address is selected instead, then any other ECU data on the PGN will be ignored.

The **Receive Data Size**, **Receive Data Index in Array (LSB)**, **Receive Bit Index in Byte (LSB)**, **Receive Resolution** and **Receive Offset** can all be used to map any SPN supported by the J1939 standard to the output data of the Received function block.

As mentioned earlier, a CAN receive function block can be selected as the source of the control input for the output function blocks. When this is the case the **Receive Data Minimum** (Off Threshold) and **Receive Data Maximum** (On Threshold) setpoints determine the minimum and maximum values of the control signal. As the names imply, they are also used as the On/Off thresholds for digital output types. These values are in whatever units the data is AFTER the resolution and offset is applied to the CAN Receive signal. The BATT-MON supports 18 and 16 Unique CAN Receive messages for the 18-Cell BATT-MON and 16-Cell BATT-MON respectively.

2. OVERVIEW OF J1939 FEATURES

The software was designed to provide flexibility to the user with respect to messages sent to and from the ECU by providing:

- Configurable ECU Instance in the NAME (to allow multiple ECUs on the same network)
- Configurable Transmit PGN and SPN Parameters

2.1. Introduction to Supported Messages

The ECU is compliant with the standard SAE J1939, and supports the following PGNs

From J1939-21 - Data Link Layer

•	Request	59904 (\$00EA00)
•	Acknowledgment	59392 (\$00E800)
•	Transport Protocol – Connection Management	60416 (\$00EC00)
•	Transport Protocol – Data Transfer Message	60160 (\$00EB00)

Note: Any Proprietary B PGN in the range 65280 to 65535 (\$00FF00 to \$00FFFF) can be selected

From J1939-73 – Diagnostics DM1 – Active Diagnostic Trouble Codes 65226 (\$00FECA) DM2 – Previously Active Diagnostic Trouble Codes 65227 (\$00FECB) • DM3 – Diagnostic Data Clear/Reset for Previously Active DTCs 65228 (\$00FECC) • DM11 – Diagnostic Data Clear/Reset for Active DTCs 65235 (\$00FED3) • From J1939-81 - Network Management Address Claimed/Cannot Claim 60928 (\$00EE00) • 65240 (\$00FED8) Commanded Address From J1939-71 – Vehicle Application Layer Software Identification 65242 (\$00FEDA)

None of the application layer PGNs are supported as part of the default configurations, but they can be selected as desired for either transmit or received function blocks. Setpoints are accessed using standard Memory Access Protocol (MAP) with proprietary addresses. The Axiomatic Electronic Assistant (EA) allows for quick and easy configuration of the unit over the CAN network.

2.2. NAME, Address and Software ID

2.2.1. J1939 Name

The BATT-MON ECU has the following defaults for the J1939 NAME. The user should refer to the SAE J1939/81 standard for more information on these parameters and their ranges.

	18-Cell BATT-MON	16-Cell BATT-MON
Arbitrary Address Capable	Yes	Yes
Industry Group	0, Global	0, Global
Vehicle System Instance	0	0
Vehicle System	0, Non-specific system	0, Non-specific system
Function	126, Axiomatic IO Controller	126, Axiomatic IO Controller

Function Instance	6, Axiomatic AX032000, Battery	8, Axiomatic AX032050, 16-Cell			
	Monitoring System	Battery Monitoring System			
ECU Instance	0, First Instance	0, First Instance			
Manufacture Code	162, Axiomatic Technologies	162, Axiomatic Technologies			
	Corporation	Corporation			
Identity Number	Variable, uniquely assigned during	Variable, uniquely assigned during			
-	factory programming for each ECU	factory programming for each ECU			

Table 7 – Default J1939 NAME

The ECU Instance is a configurable setpoint associated with the NAME. Changing this value will allow multiple ECUs of this type to be distinguishable by other ECUs (including the Axiomatic Electronic Assistant) when they are all connected on the same network.

2.2.2. **ECU Address**

The default value of this setpoint is 128 (0x80), which is the preferred starting address for selfconfigurable ECUs as set by the SAE in J1939 tables B3 to B7. The Axiomatic EA will allow the selection of any address between 0 to 253, and it is the user's responsibility to select an address that complies with the standard. The user must also be aware that since the unit is arbitrary address capable, if another ECU with a higher priority NAME contends for the selected address, the BATT-MON will continue select the next highest address until it finds one that it can claim. See J1939/81 for more details about address claiming.

2.2.3. Software Identifier

PGN 65242	Softwa	are Identification	- SOFT
Transmission R	epetition R	ate: On request	
Data Length:		Variable	
Extended Data	Page:	0	
Data Page:	-	0	
PDU Format:		254	
PDU Specific:		218 PGN Supporting Information:	
Default Priority:		6	
Parameter Grou	ıp Number	65242 (0xFEDA)	
Start Position	Length	Parameter Name SPN	
1	1 Byte	Number of software identification fields 965	
2-n	Variable	Software identification(s), Delimiter (ASCII "*") 234	

For the BATT-MON ECU, Byte 1 is set to 5, and the identification fields are as follows

(Part Number)*(Version)*(Date)*(Owner)*(Description)

The Axiomatic EA shows all this information in "General ECU Information", as shown below:

Electronic Assistant							
File View Options Help							
🔁 😰 📰 F							
□··· — J1939 CAN Network	Parameter	Value	Description				
AX032000, Battery Monitoring S	ECU Part Number	AX032000					
General ECU Information	ECU Serial Number	0000118001					
Setpoint File Peotloader Information							
Bootioader Information	ECU J1939 NAME		PGN 60928. 64-bit ECU Identifier sent in Address Claimed Messages				
	+ Arbitrary Address Capable	1	Yes				
	+Industry Group	0	Global				
	+ Vehicle System Instance	0					
	+ Vehicle System	0	Non-specific system				
	+ Reserved	0					
	+ Function	126	Axiomatic IO Controller				
	+ Function Instance	6					
	+ ECU Instance	0	#1 - First Instance				
	+ Manufacturer Code	162	Axiomatic Technologies				
	➡ Identity Number	1935958	Unique ECU network ID number				
	ECU Address	128	Reserved for future assignment by SAE, but available for use by self configurable ECUs				
	FECU ID		PGN 64965 -ECUID				
	+ ECU Part Number	AX032000					
	+ ECU Serial Number	0000118001					
	+ ECU Location	ECULocation					
	+ ECU Type	ECUType					
	ECU Manufacturer Name	Axiomatic					
	■ Software ID		PGN 65242 -SOFT				
	+ Field #1	18-Cell Battery Monitor with CAN					
	+ Field #2	Project: 90V-BATT-MON-CAN					
	➡ Field #3	Firmware: V99.99, November 28 2018					
<							
Ready	·		250 kbit/s				

Note: The information provided in the Software ID is available for any J1939 service tool which supports the PGN -SOFT.

3. ECU SETPOINTS ACCESSED WITH THE AXIOMATIC ELECTRONIC ASSISTANT

Many setpoints have been referenced throughout this manual. This section describes in detail each setpoint, their defaults and ranges. For more information on how each setpoint is used by the BATT-MON, refer to the relevant section of the user manual.

3.1. J1939 Network Setpoints

The J1939 Network function block is detailed in section 2.2. Please refer to that section for detailed information on how these setpoints are used

🖲 E	lectronic Assistant			
File	View Options Help			
	📴 🛐 F			
	i General ECU Information	 Setpoint Name 	Value	Comment
	Setpoint File	SP ECU Address	128	Reserved for future assignment by SAE, but available for use by self configurable ECUs
	SP 11939 Network	SP ECU Instance Number	0	#1 - First Instance
		-		
•	4			
Read	у			250 kbit/s

Screen Capture of Default J1939 Network Setpoints

Name	Range	Default	Notes
ECU Address	0255	128	Refer to Section 2.2.2
ECU Instance Number	06	0	Refer to Section 2.2.1

 Table 8 – Default J1939 Network Setpoints

3.2. Cell Group Input Setpoints

The Cell Group Input function block is defined in Section 1.2. Please refer to that section for detailed information on how these setpoints are used.

💽 Electronic Assistant							
File View Options Help							
🗱 📴 🔛 F							
J1939 CAN Network	Setpoint Name	Value	Comment				
E. AX032000, Battery Monitorin	SP Monitor Only Setting	0	False				
General ECU Information	SP Cell Overvoltage	4.00	V				
Setpoint File	SP Cell Undervoltage	2.00	V				
Cell Group	SP VPS Overvoltage	80.00	V				
SP Cell Input 1	SP VPS Undervoltage	10.00	V				
SP Cell Input 2	SP Shutdown Temperature	100.00	DegC				
SP Cell Input 3	SP Discharge Rx Timeout Setting	1	Automated Discharge Control				
SP Cell Input 4	SP Open Wire Check Period	5	Sec				
	SP Block Empty DM1 Messages	1	True				
Ready			250 kbit/s				

Screen Capture of Default Cell Group Input Setpoints

Name	Range	Default	Notes
Monitor Only Setting	False/True	False	Refer to Section 1.2
Cell Overvoltage	04.5	4 V	Refer to Section 1.2
Cell Undervoltage	04.5	2 V	Refer to Section 1.2
VPS Overvoltage	VPS Undervoltage90	80 V	Refer to Section 1.2
VPS Undervoltage	0VPS Overvoltage	10 V	Refer to Section 1.2
Shutdown Temperature	0150	100°C	Refer to Section 1.2
Discharge Rx Timeout	Drop List	Automated	Refer to Section 1.2,
Setting	DIOP LIST	Discharge Control	Table 1
Open Wire Check	0 60	5 socondo	Pofor to Soction 1.2
Period	000	5 Seconds	Refer to Section 1.2
Block Empty DM1 Messages	False/True	True	Refer to Section 1.2

 Table 9 – Default Cell Group Input Setpoints

3.3. Cell Input Setpoints

The Cell Input function block is defined in Section 1.3. Please refer there for detailed information about how all these setpoints are used.

💽 El	ectronic Assistant				
File	View Options Help				
	Setpoint File	*	Setpoint Name	Value	Comment
	SP Cell Group	Ξ	SP Cell Enabled	1	True
	SP Cell Input 1		SP Cell Control	0	Automated
	SP Cell Input 2		SP PWM Value Source		Parameter not used with automated cell control or disabled cell.
	SP Cell Input 4		SP Event Generates a DTC in DM1	1	True
	Cell Input 5		SP Event Cleared Only by DM11	0	False
	SP Cell Input 6		SP Lamp Set by Event in DM1	0	Protect
	SP Cell Input 7		SP SPN for Event used in DTC	0x00000000	SPN: 0
	SP Cell Input 8	-	SP FMI for Event used in DTC	0	Data Valid But Above Normal Operational Range - Most Severe Level
•	· · · · ·		SP Delay Before Sending DM1	100	ms
Ready	/				250 kbit/s

Screen Capture of Default Cell Input Setpoints

Name	Range	Default	Notes
Cell Enabled	False/True	True	Refer to Section 1.3
Cell Control	Drop List	Automated	Refer to Section 1.3, Table 3
PWM Value Source	Drop List	Depends on Cell Number	Refer to Section 1.3
Event Generates a DTC in DM1	False/True	True	Refer to Section 1.3
Event Only Cleared by DM11	False/True	False	Refer to Section 1.4
Lamp Set by Event in DM1	Drop List	0	Refer to Section 1.4
SPN for Event used in DTC	0524287	0	Refer to Section 1.4
FMI for Event used in DTC	Drop List	0	Refer to Section 1.4, Table 4
Delay Before Sending DM1	060000	100	Refer to Section 1.4

Preliminary User Manual UMAX0320x0. Version: 2.1

3.4. Diagnostic Input Setpoints

The Diagnostic Input function block is defined in Section 1.4. Please refer to that section for detailed information about how all these setpoints are used.

Electronic Assistant				
File View Options Help				
VPS Undervoltage Fault	*	Setpoint Name	Value	Comment
<u>SP</u> VPS Overvoltage Fault <u>SP</u> Over Temperature Fault <u>SP</u> Lost Communication Fault		SP Event Generates a DTC in DM1	1	True
		SP Event Cleared Only by DM11	0	False
		SP Lamp Set by Event in DM1	0	Protect
CAN Transmit 1		SP SPN for Event used in DTC	0x00000000	SPN: 0
CAN Transmit 3		SP FMI for Event used in DTC	0	Data Valid But Above Normal Operational Range - Most Severe Level
	Ŧ	SP Delay Before Sending DM1	100	ms
4				
Ready				250 kbit/s

Screen Capture of Diagnostic Input Setpoints

Name	Range	Default	Notes
Event Generates a DTC in DM1	False/True	True	Refer to Section 1.4
Event Only Cleared by DM11	False/True	False	Refer to Section 1.4
Lamp Set by Event in DM1	Drop List	0	Refer to Section 1.4
SPN for Event used in DTC	0524287	0	Refer to Section 1.4
FMI for Event used in DTC	Drop List	0	Refer to Section 1.4, Table 4
Delay Before Sending DM1	060000	100	Refer to Section 1.4

Table 11 – Default Diagnostic Input Setpoints

3.5. CAN Transmit Setpoints

The CAN Transmit function block is defined in Section 1.5. Please refer to that section for detailed information about how all these setpoints are used.

Electronic	: Assistant				
File View	Options Help				
👷 🔛 🖺	2 F				
	SP Cell Input 8	*	Setpoint Name	Value	Comment
			SP Transmit PGN	0xFF00	Transmit PGN: 65280
	SP Cell Input 10		SP Transmit Repetition Rate	25	ms
	SP Cell Input 11		SP Transmit Message Priority	6	
	SP Cell Input 12		SP Destination Address (PDU1)		Parameter not used with this PGN
	SP Cell Input 13		SP Override Source Address	0	False
	SP Cell Input 14		SP Source Address		Parameter not used - Disguise Source Address is Disable
	SP Cell Input 15		SP Signal 1 Data Source	1	Cell 1 Voltage
	<u>SP</u> Cerrinput IO		SP Signal 1 Transmit Data Size	5	Continuous 2-Bytes
			SP Signal 1 Transmit Data Index in Array (LSB)	0	1st Byte Position
			SP Signal 1 Transmit Bit Index in Byte (LSB)	0	1st Bit Position
	SP Lost Communicatio		SP Signal 1 Transmit Data Resolution	0.0010	
	SP CAN Transmit 1		SP Signal 1 Transmit Data Offset	0.0000	
			SP Signal 1 Transmit Data Minimum	0.0000	
	SP CAN Transmit 3		SP Signal 1 Transmit Data Maximum	5.0000	
	SP CAN Transmit 4		SP Signal 2 Data Source	2	Cell 2 Voltage
			SP Signal 2 Transmit Data Size	5	Continuous 2-Bytes
	SP CAN Transmit 6		SP Signal 2 Transmit Data Index in Array (LSB)	2	3rd Byte Position
	SP CAN Transmit 7		SP Signal 2 Transmit Bit Index in Byte (LSB)	0	1st Bit Position
	SP CAN Transmit 8		SP Signal 2 Transmit Data Resolution	0.0010	
	SP CAN Transmit 9		SP Signal 2 Transmit Data Offset	0.0000	
	SP CAN Transmit 10		SP Signal 2 Transmit Data Minimum	0.0000	
	SP CAN Receive 1		SP Signal 2 Transmit Data Maximum	5.0000	
	SP CAN Receive 2	=	SP Signal 3 Data Source	3	Cell 3 Voltage
	SP CAN Receive 4		SP Signal 3 Transmit Data Size	5	Continuous 2-Bytes
			SP Signal 3 Transmit Data Index in Array (LSB)	4	5th Byte Position
	SP CAN Receive 6		SP Signal 3 Transmit Bit Index in Byte (LSB)	0	1st Bit Position
	SP CAN Receive 7		SP Signal 3 Transmit Data Resolution	0.0010	
	SP CAN Receive 8		SP Signal 3 Transmit Data Offset	0.0000	
	SP CAN Receive 9		SP Signal 3 Transmit Data Minimum	0.0000	
	SP CAN Receive 10		SP Signal 3 Transmit Data Maximum	5.0000	
	SP CAN Receive 11		SP Signal 4 Data Source	4	Cell 4 Voltage
	SP CAN Receive 12		SP Signal 4 Transmit Data Size	5	Continuous 2-Bytes
	SP CAN Receive 13		SP Signal 4 Transmit Data Index in Array (LSB)	6	7th Byte Position
	SP CAN Receive 14		SP Signal 4 Transmit Bit Index in Byte (LSB)	0	1st Bit Position
	SP CAN Receive 15		SP Signal 4 Transmit Data Resolution	0.0010	
_	SP CAN Receive 16		SP Signal 4 Transmit Data Offset	0.0000	
i E	Bootloader Information	-	SP Signal 4 Transmit Data Minimum	0.0000	
•	II •		SP Signal 4 Transmit Data Maximum	5.0000	
leady					250 kbit/s

Screen	Capture	of CAN	Transmit	Setpoints
--------	---------	--------	----------	-----------

Name	Range	Default	Notes
Transmit PGN	065535	65280 (\$FF00)	Refer to Section 1.5
Transmit Repetition Rate	060,000	0	Refer to Section 1.5
Transmit Message Priority	07	6	Refer to Section 1.5
Destination Address (PDU1)	0255	254	Refer to Section 1.5
Override Source Address	False/True	False	Refer to Section 1.5
Source Address	0255	0	Refer to Section 1.5
Signal x Data Source	Drop List	Depends on signal number	Refer to Section 1.5, Table 5
Signal x Transmit Data Size	Drop List	Continuous 2-Byte	Refer to Section 1.5

Preliminary User Manual UMAX0320x0. Version: 2.1

Signal x Transmit Data Index in Array (LSB)	0 to 8-DataSize	Depends on signal number	Refer to Section 1.5
Signal x Transmit Bit Index in Byte (LSB)	0 to 8-DataSize	0	Refer to Section 1.5
Signal x Transmit Data Resolution	-10 ⁶ to 10 ⁶	0.001 for Cell Voltages, 0.01 for other signals	Refer to Section 1.5
Signal x Transmit Data Offset	-10 ⁴ to 10 ⁴	-45 for Temperature Shutdown, 0 for all other signals	Refer to Section 1.5
Signal x Transmit Data Minimum	-0xFFFFFFFFFDataMax	255	Refer to Section 1.5
Signal x Transmit Data Maximum	DataMin0xFFFFFFFF	0	Refer to Section 1.5

Table 12 – Default CAN Transmit Setpoints

3.6. CAN Receive Setpoints

The CAN Receive function block is defined in Section 1.6. Please refer to that section for detailed information about how all these setpoints are used.

Electronic Assistant			
File View Options Help			
SP CAN Receive 1	Setpoint Name	Value	Comment
CAN Receive 2	SP Receive Message Enabled	1	
SP CAN Receive 3	SP Receive PGN	0xFF80	Received PGN: 65408
SP CAN Receive 5	SP Receive Message Timeout	100	ms
SP CAN Receive 6	SP Specific Address That Sends	1	True
SP CAN Receive 7	SP Address That Sends	254	Source Address: 0xFE
SP CAN Receive 8	SP Receive Data Size	4	Continuous 1-Byte
CAN Receive 9	SP Receive Data Index in Array (LSB)	0	1st Byte Position
	SP Receive Bit Index in Byte (LSB)		Parameter not used with current Data Size selected
SP CAN Receive 11	SP Receive Data Resolution	1.0000000	
SP CAN Receive 12	SP Receive Data Offset	0.0000000	
SP CAN Receive 13	SP Receive Data Min (OFF Threshold)	0.0000000	
<pre></pre>	SP Receive Data Max (ON Threshold)	255.0000000	
Ready			250 kbit/s

Screen Capture of CAN Receive Setpoints

Name	Range	Default	Notes
Receive Message Enable	False/True	True	Refer to Section 1.6
Receive PGN	065535	65408 (\$FF80)	Refer to Section 1.6
Receive Message Timeout	060000	100	Refer to Section 1.6
Specific Address That Sends	False/True	True	Refer to Section 1.6
Address That Sends	0255	254 (\$FE)	Refer to Section 1.6
Receive Data Size	Drop List	Continuous 1-Byte	Refer to Section 1.6

Preliminary User Manual UMAX0320x0. Version: 2.1

Receive Data Index in Array (LSB)	08-DataSize	Byte 1	Refer to Section 1.6
Receive Bit Index in Byte (LSB)	08-DataSize	0	Refer to Section 1.6
Receive Data Resolution	-10 ⁶ to 10 ⁶	1	Refer to Section 1.6
Receive Data Offset	-10 ⁴ to 10 ⁴	0	Refer to Section 1.6
Receive Data Minimum	-0xFFFFFFFFFDataMax	0	Refer to Section 1.6

Table 13 – Default CAN Receive Setpoints

4. REFLASHING OVER CAN WITH THE AXIOMATIC EA BOOTLOADER

The AX0320x0 can be upgraded with new application firmware using the **Bootloader Information** section. This section details the simple step-by-step instructions to upload new firmware provided by Axiomatic onto the unit via CAN, without requiring it to be disconnected from the J1939 network.

1. When the Axiomatic EA first connects to the ECU, the **Bootloader Information** section will display the following information.

🗈 Electronic Assistant								
File View Options Help								
J1939 CAN Network	Parameter	Value						
ECU AX032050, 16-Cell Battery Mor	Hardware ID	18119						
General ECU Information	Hardware Revision Number	1.00						
B Postloader Information	Hardware Compatibility Level	1.00						
Boolioader mornation	Hardware Description	PCB-18119-01						
	■ Bootloader ID	18119						
	 Bootloader Version Number 	1.00						
	 Bootloader Compatibility Level 	1.00						
	 Bootloader Description 	16BC-1HV-IN-CAN						
	Bootloader ECU Address	253						
	Force Bootloader to Load on Reset	No						
1	Application Firmware ID	18119						
	Application Firmware Version Number	99.99						
	+ Application Firmware Compatibility Level	1.00						
	Application Firmware Description	16-Cell Battery Monitor with CAN						
	Application Firmware Flash File	Output.bin						
	Application Firmware Flashing Date	December 10, 2018, 02:57 PM						
	Application Firmware Flashing Tool	Electronic Assistant 5.13.98.0, October 2018						
	Application Firmware Flashing Comments							
4								
Ready		250 kbit/s						

2. To use the bootloader to upgrade the firmware running on the ECU, change the variable "Force Bootloader to Load on Reset" to Yes.

Force Bootloader to Load on Reset Setup	x
Force Bootloader to Load on Reset: 1 - Yes	_
Default Value: 1 - Yes	Set Default
	OK Cancel

3. When the prompt box asks if you want to reset the ECU, select Yes.

4. Upon reset, the ECU will no longer show up on the J1939 network as an AX0320x0 but rather as **J1939 Bootloader #1**.

Electronic Assistant					د
File View Options Help					
■ → J1939 CAN Network → J1939 Bootloader #1 i General ECU Information B Bootloader Information	ECU ECU J1939 Bootloader #1	J1939 NAME 71775019891264100	Addr 253	J1939 Preferred Reserved for OEM	
Ready	7			250 kbit/s	

🖎 Electronic Assistant					
File View Options Help					
J1939 CAN Network	Parameter	Value	Description		
i General ECU Information B Bootloader #1 B Bootloader Information	ECU Part Number	AX032050			
	ECU Serial Number	0000118001			
	ECU J1939 NAME		PGN 60928. 64-bit ECU Identifier sent in Address Claimed Messages		
	+ Arbitrary Address Capable	0	No		
	+Industry Group	0	Global		
	+ Vehicle System Instance	0			
	+ Vehicle System	127	Not Available		
	+ Reserved	0			
	+ Function	255	Not Available		
	+ Function Instance	0			
	+ ECU Instance	0	#1 - First Instance		
	+ Manufacturer Code	162	Axiomatic Technologies		
	└+Identity Number	1935972	Unique ECU network ID number		
	ECU Address	253	Reserved for OEM		
	- ECU ID	N/A	PGN 64965 -ECUID		
	— Software ID	N/A	PGN 65242 -SOFT		
Ready			250 kbit/s		

Note that the bootloader is NOT Arbitrary Address Capable. This means that if you want to have multiple bootloaders running simultaneously (not recommended) you would have to manually change the address for each one before activating the next, or there will be address conflicts, and only one ECU would show up as the bootloader. Once the 'active' bootloader returns to regular functionality, the other ECU(s) would have to be power cycled to re-activate the bootloader feature.

5. When the **Bootloader Information** section is selected, the same information is shown as when it was running the AX0320x0 firmware, but in this case the **F**lashing feature has been enabled.

Electronic Assistant			
File View Options Help			
* P P F			
III J1939 CAN Network	Parameter	Value	
ECU J1939 Bootloader #1	Hardware ID	18119	
General ECU Information	Hardware Revision Number	1.00	
Bootloader Information	Hardware Compatibility Level	1.00	
	Hardware Description	PCB-18119-01	
	F Bootloader ID	18119	
	Bootloader Version Number	1.00	
	Bootloader Compatibility Level	1.00	
	Bootloader Description	16BC-1HV-IN-CAN	
	Bootloader ECU Address	253	
	Force Bootloader to Load on Reset	Yes	
	Application Firmware ID	18119	
	Application Firmware Version Number	99.99	
	Application Firmware Compatibility Level	1.00	
	Application Firmware Description	16-Cell Battery Monitor with CAN	
	Application Firmware Flash File	Output.bin	
	Application Firmware Flashing Date	December 10, 2018, 02:57 PM	
	Application Firmware Flashing Tool	Electronic Assistant 5.13.98.0, October 2018	
	Application Firmware Flashing Comments		
Ready		250 kbit/s	

- Select the <u>F</u>lashing button and navigate to where you had saved the AF-18009-x.yy.bin or AF-18119-x.yy.bin file sent from Axiomatic. (Note: only binary (.bin) files can be flashed using the Axiomatic EA tool)
- 7. Once the Flash Application Firmware window opens, you can enter comments such as "Firmware upgraded by [Name]" if you so desire. This is not required, and you can leave the field blank if you do not want to use it.

Note: You do not have to date stamp or timestamp the file, as this is all done automatically by the Axiomatic EA tool when you upload the new firmware.

Flash Application Firmware	22
Flash File Name:	AF-18119-99.99.bin
Flashing Comments: Press CTRL+ENTER to add a new string	Flashed by P.S.
Flashing Status Idle	Erase All ECU Flash Memory

WARNING: Do not check the "Erase All ECU Flash Memory" box unless instructed to do so by your Axiomatic contact. Selecting this will erase ALL data stored in nonvolatile flash. It will also erase any configuration of the setpoints that might have been done to the ECU and reset all setpoints to their factory defaults. By leaving this box unchecked, none of the setpoints will be changed when the new firmware is uploaded.

8. A progress bar will show how much of the firmware has been sent as the upload progresses. The more traffic there is on the J1939 network, the longer the upload process will take.

Flash Application Firmware	22
Flash File Name:	AF-18119-99.99.bin
Flashing Comments: Press CTRL+ENTER to add a new string	Flashed by P.S.
	Erase All ECU Flash Memory
Flashing Status	
Flashing Memory	Flash ECU
	Cancel Flashing
	Exit

9. Once the firmware has finished uploading, a message will popup indicating the successful operation. If you select to reset the ECU, the new version of the AX0320x0 application will start running, and the ECU will be identified as such by the Axiomatic EA. Otherwise, the next time the ECU is power-cycled, the AX0320x0 application will run rather than the bootloader function.

Note: If at any time during the upload the process is interrupted, the data is corrupted (bad checksum) or for any other reason the new firmware is not correct, i.e. bootloader detects that the file loaded was not designed to run on the hardware platform, the bad or corrupted application will not run. Rather, when the ECU is reset or power-cycled the **J1939 Bootloader** will continue to be the default application until valid firmware has been successfully uploaded into the unit.

5. INSTALLATION INSTRUCTIONS

Figure 1.0 - Dimensional Drawing – Model AX032000 is shown.

	Crov Connector		Plack Connecto	
-				
1	Cell 9	1	Cell 6	
2	Cell 11	2	Cell 4	
3	Cell 13	3	Cell 2	
4	Cell 15	4	V -	
5	Cell 17	5	CAN_H	
6	V +	6	BATT +	
7	Cell 18	7	BATT -	
8	Cell 16	8	CAN_L	
9	Cell 14	9	Cell 1	
10	Cell 12	10	Cell 3	
11	Cell 10	11	Cell 5	
40	a a		• -	
12	Cell 8	12	Cell 7	
12	Cell 8 16-Cell C	0nnecto	Cell 7 r Pinout Black Connecto	
12	Cell 8 16-Cell C Grey Connector Cell 8	Connector	Cell 7 r Pinout Black Connecto Cell 5	
12	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10	20000000000000000000000000000000000000	Cell 7 r Pinout Black Connecto Cell 5 Cell 3	
12 1 2 3	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12	20000000000000000000000000000000000000	r Pinout Black Connecto Cell 5 Cell 3 Not Used	
12 1 2 3 4	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 14	2 3 4	r Pinout Black Connecto Cell 5 Cell 3 Not Used V -	
12 1 2 3 4 5	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 14 Cell 16	2 2 3 4 5	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H	
12 1 2 3 4 5 6	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 12 Cell 14 Cell 16 V +	2 3 4 5 6	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT +	
12 1 2 3 4 5 6 7	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 14 Cell 16 V + Not Used	2 3 4 5 6 7	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT + BATT -	
12 1 2 3 4 5 6 7 8	Cell 816-Cell CGrey ConnectorCell 8Cell 10Cell 12Cell 12Cell 14Cell 16V +Not UsedCell 15	2 2 3 4 5 6 7 8	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT + BATT - CAN_L	
12 1 2 3 4 5 6 7 8 9	Cell 816-Cell CGrey ConnectorCell 8Cell 10Cell 12Cell 12Cell 14Cell 16V +Not UsedCell 15Cell 13	20000000000000000000000000000000000000	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT + BATT - CAN_L Cell 1	
12 1 2 3 4 5 6 7 8 9 10	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 14 Cell 16 V + Not Used Cell 13 Cell 11	12 Connector 1 2 3 4 5 6 7 8 9 10	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT + BATT + BATT - CAN_L Cell 1 Cell 2	
12 1 2 3 4 5 6 7 8 9 10 11	Cell 8 16-Cell C Grey Connector Cell 8 Cell 10 Cell 12 Cell 12 Cell 14 Cell 16 V + Not Used Cell 15 Cell 13 Cell 11	12 Connector 1 2 3 4 5 6 7 8 9 10 11	r Pinout Black Connecto Cell 5 Cell 3 Not Used V - CAN_H BATT + BATT - CAN_L Cell 1 Cell 2 Cell 4	

6. TECHNICAL SPECIFICATIONS

6.1. Input Specifications

Power Supply Input -	12V, 24Vdc nominal (6…90Vdc power supply range)
Isolation	Isolated power supply up to 1.000 V
Protection	Surge and reverse polarity protection are provided.
All Inputs	18 Differential Battery Cell Inputs
	 19 Input Pins are provided to permit multiple units to be connected in series. 16-bit Sigma-delta ADC with third order noise programmable digital filter Cell measurement range 0-5Vdc Scan rate is programmable from 1 to 200 milliseconds for all 18 cells. Total measurement error is 2.2mV maximum. Passive cell balancing up to 1A (max.) with individual programmable pulse width modulation duty cycle control for each cell.
	Suitable for most battery chemistries.
Battery Stack Voltage	1 0-90Vdc voltage input measurement
Input	12-bit ADC
	0.5% accuracy

6.2. General Specifications

Microprocessor	STM32F405RG
Control Logic	Standard control logic
User Interface (PC-based)	The Axiomatic Electronic Assistant for Windows operating systems.
	It comes with a royalty-free license for use.
	The Axiomatic Electronic Assistant requires an Axiomatic USB-CAN converter to link
	KIT P/Ns: AX070502 or AX070506K
CAN Communications	1 CAN port (SAF .11939)
o, in communications	Isolated up to 1,000 V
Quiescent Current Draw	23 mA @ 24V
	46 mA @ 12V
Compliance	RoHS Directive
	Pending CE marking for EMC Directive
Vibration	Pending
	Random Vibration: 7.7 Grms peak
	Sinusoidal Component: 10 g peak
	Based on MIL-STD-202G, Methods 204G and 214A
Shock	Pending
	50 g hair sine puise, 6 x 6ms per axis
Notwork Termination	It is passagery to terminete the network with external termination registers. The
Network remination	resistors are 120 Ohm 0.25W minimum motal film or similar type. They should be
	placed between CAN H and CAN L terminals at both ends of the network.
Operating Conditions	-40 to 85 °C (-40 to 185 °F)
Protection	IP67, PCB is conformal coated and protected by the housing.
Weight	0.50 lb. (0.23 kg) (to be confirmed)
Enclosure and Dimensions	High Temperature Nylon PCB Enclosure – (equivalent TE Deutsch P/N: EEC-325X4B)
	4.66 x 5.25 x 1.42 inches 118.53 x 133.45 x 35.99 mm
	(W x L x H excluding mating plugs)

7. VERSION HISTORY

Version	Date	Author	Modifications
1	December 12, 2018	Peter Sotirakos	Initial Draft
-	January 31, 2019	Amanda Wilkins	Marketing Review, Unit Weight
-	January 31, 2019	Peter Sotirakos	Added Installation Instructions
2	February 15, 2019	Peter Sotirakos	Added changes for firmware version 2.00
2.1	August 2, 2023	Kiril Mojsov	Performed Legacy Updates

Note:

Technical Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.