MAGNETIC PICK-UP INPUT CONTROLLER With CANopen®

USER MANUAL

P/N: AX031501

VERSION HISTORY

Version	Date	Author	Modification
1.0 .0.	May 4, 2017	Ilona Korpelainen	Initial Draft
-	June 7, 2017	Amanda Wilkins	Marketing Review
1.00 A	Jan 30, 2020	Ilona Korpelainen	Added 48V nominal to the power supply input technical specification
1.00 B	August 1, 2023	Kiril Mojsov	Legacy Updates

ACCRONYMS

+/-	Battery positive (a.k.a. Vps) or Battery Negative (a.k.a.
CAN	Control Area Network
CANopen®	CANopen® is a registered community trademark of CAN in Automation e.V.
CAN-ID	CAN 11-bit Identifier
COB	Communication Object
CTRL	Control
EDS	Electronic Data Sheet
EMCY	Emergency
GND	Ground reference (a.k.a. BATT-)
LSB	Least Significant Byte (or Bit)
LSS	Layer Settling Service
LUT	Lookup Table
MI	Magnetic Input
MSB	Most Significant Byte (or Bit)
NMT	Network Management
RO	Read Only Object
RPDO	Received Data Object
RPM	Rotations per Minute
RW	Read/Write Object
SDO	Service Data Object
TPDO	Transmitted Process Data Object
Vps	Voltage Power Supply (a.k.a. BATT+)
WO	Write Only Object

TABLE OF CONTENTS

1. OVERVIEW OF CONTROLLER 9
1.1. Input Function Blocks 11
1.2. Lookup Table Function Block 16
1.2.1. $\quad X$-Axis, Input Data Response 16
1.2.2. \quad Y-Axis, Lookup Table Output 17
1.2.3. Point to Point Response 17
1.3. Programmable Logic Function Block 20
1.3.1. Conditions Evaluation 22
1.3.2. Table Selection 24
1.3.3. Logic Block Output 25
1.4. Math Function Block 25
1.5. Miscellaneous Function Block 27
1.6. Internal Function Block Control Sources 29
2. INSTALLATION INSTRUCTIONS 31
2.1. Dimensions and Pinout 31
2.2. Mounting Instructions 32
3. CANOPEN® OBJECT DICTIONARY 34
3.1. Node ID and Baudrate 34
3.1.1. LSS Protocol to Update 34
3.2. Communication Objects (DS-301 and DS-404) 37
3.2.1. Object 1000h: Device Type 38
3.2.2. Object 1001h: Error Register 39
3.2.3. Object 1002h: Manufacturer Status Object 39
3.2.4. Object 1003h: Pre-Defined Error Field 39
3.2.5. Object 100Ch: Guard Time 41
3.2.6. Object 100Dh: Lifetime Factor 41
3.2.7. Object 1010h: Store Parameters 42
3.2.8. Object 1011h: Restore Parameters 43
3.2.9. Object 1016h: Consumer Heartbeat Time 44
3.2.10. Object 1017h: Producer Heartbeat Time 45
3.2.11. Object 1018h: Identity Object 45
3.2.12. Object 1020h: Verify Configuration 46
3.2.13. Object 1029h: Error Behavior 47
3.2.14. RPDO Behavior 48
3.2.15. TPDO Behavior 50
3.3. Application Objects (DS-404) 52
3.3.1. Object 7100h: AI Input Field Value 53
3.3.2. Object 6110h: Al Sensor Type 53
3.3.3. Object 6112h: Al Operating Mode 54
3.3.4. Object 7120h: AI Input Scaling 1 FV 54
3.3.5. Object 7121h: Al Input Scaling 1 PV 55
3.3.6. Object 7122h: Al Input Scaling 2 FV 55
3.3.7. Object 7123h: AI Input Scaling 2 PV 56
3.3.8. Object 7130h: Al Input Process Value 57
3.3.9. Object 6132h: AI Decimal Digits PV 57
3.3.10. Object 7148h: AI Span Start. 58
3.3.11. Object 7149h: AI Span End 58
3.3.12. Object 61A0h: AI Filter Type. 59
3.3.13. Object 61A1h: AI Filter Constant 59
3.4. Manufacturer Objects 60
3.4.1. Object 2101h: AI Number of Pulses Per Revolution 61
3.4.2. Object 2102h: Al Decimal Digits FV 62
3.4.3. Object 2103h: Al Debounce Filter 62
3.4.4. Object 2104h: AI Pulse Count to Reset Counter 63
3.4.5. Object 2105h: Al Pulse Count in Time Window 63
3.4.6. Object 2106h: Al Elapsed Time to Reach Pulse Count. 64
3.4.7. Object 2110h: AI Error Detect Enable 65
3.4.8. Object 2111h: Al Error Clear Hysteresis 65
3.4.9. Object 2112h: AI Error Reaction Delay 66
3.4.10. Object 2500h: EC Extra Received Process Value 66
3.4.11. Object 2502h: EC Decimal Digits PV 67
3.4.12. Object 2520h: EC Scaling 1 PV 67
3.4.13. Object 2522h: EC Scaling 2 PV 68
3.4.14. Object 3yzOh: LTyz Input X-Axis Source 69
3.4.15. Object 3yz1h: LTyz Input X-Axis Number. 69
3.4.16. Object 3yz3h: LTyz X-Axis Decimal Digits PV. 70
3.4.17. Object 3yz4h: LTyz Y-Axis Decimal Digits PV. 70
3.4.18. Object 3yz5h: LTyz Point Response 70
3.4.19. Object 3yz6h: LTyz Point X-Axis PV 71
3.4.20. Object 3yz7h: LTyz Point Y-Axis PV 72
3.4.21. Object 3yz8h: LTyz Output Y-Axis PV 72
3.4.22. Object 3300h: Logic Block Enable. 73
3.4.23. Object 3310h: Logic Block Selected Table 73
3.4.24. Object 3320h: Logic Block Output PV 74
3.4.25. Object $3 x 01 \mathrm{~h}$: LB(3-x) Lookup Table Numbers 74
3.4.26. Object $3 x 02 h$: LB(3-x) Function Logical Operator 75
3.4.27. Object $3 x 11 \mathrm{~h}: \mathrm{LB}(3-x)$ Function A Condition 1 76
3.4.28. Object $3 x 12 h: L B(3-x)$ Function A Condition 2 76
3.4.29. Object $3 x 13 h: L B(3-x)$ Function A Condition 3 76
3.4.30. Object $3 x 21 \mathrm{~h}: \mathrm{LB}(3-x)$ Function B Condition 1 76
3.4.31. Object 3x22h: LB(3-x) Function B Condition 2 76
3.4.32. Object $3 \times 23 h: L B(3-x)$ Function B Condition 3 76
3.4.33. Object $3 \times 31 \mathrm{~h}: \mathrm{LB}(3-\mathrm{x})$ Function C Condition 1 76
3.4.34. Object 3×32 h: LB $(3-x)$ Function C Condition 2 76
3.4.35. Object $3 \times 33 \mathrm{~h}: \mathrm{LB}(3-\mathrm{x})$ Function C Condition 3 76
3.4.36. Object 4000h: Math Function Enable 77
3.4.37. Object 4021h: Math Output Scaling 1 PV 77
3.4.38. Object 4023h: Math Output Scaling 2 PV 78
3.4.39. Object 4030h: Math Output Process Value 79
3.4.40. Object 4032h: Math Output Decimal Digits PV 79
3.4.41. Object 4y00h: Math Y Input Source 80
3.4.42. Object 4y01h: Math Y Input Number 80
3.4.43. Object 4y03h: Math Y Input Decimal Digits FV 81
3.4.44. Object 4y20h: Math Y Input Scaling 1 FV. 81
3.4.45. Object 4y22h: Math Y Input Scaling 2 FV. 82
3.4.46. Object 4y40h: Math Y Input Gain 83
3.4.47. Object 4y50h: Math Y Operator 83
3.4.48. Object 5010h: Constant Field Value 84
3.4.49. Object 5040 h: Fault Detection Field Value 86
3.4.50. Object 5041h: FD Set Threshold 87
3.4.51. Object 5042h: FD Clear Threshold 87
3.4.52. Object 5050h: FD Enable Error Check 3 Faults 88
3.4.53. Object 5051 h: FD Error Response Delay 89
3.4.54. Object 5550h: Enable Automatic Updates 89
3.4.55. Object 5555h: Start in Operational Mode 90
APPENDIX A - TECHNICAL SPECIFICATION A-1
Table 1 - Object 6112h - Al Operating Mode Options 11
Table 2 - Object 6110h - Al Sensor Type Options 11
Table 3 - Object 2103h Debounce Filter Options 12
Table 4 - Object 61A0h - Al Filter Type Options 12
Table 5 - Object 2102h - Al Decimal Digits FV Depending on Sensor Type 13
Table 6 - Al Object Defaults Based on Sensor Type and Input Range 15
Table 7 - Al Object Ranges Based on Sensor Type and Input Range 15
Table 8 - LTyz Point Response Options 19
Table 9 - LB(3-x) Condition Structure Definition 23
Table 10 - LB (3-x) Condition Operator Options 23
Table 11 - LB $(3-x)$ Condition Evaluation Results 24
Table 12 -LB(3-x) Function Logical Operator Options 24
Table 13 - LB(3-x) Conditions Evaluation Based on Selected Logical Operator 25
Table 14 -LB(3-x) Default Lookup Tables 25
Table 15 - Object 4y50h Math Function Operators 27
Table 16 - Control Source Options 29
Table 17 - Control Number Options Depending on Source Selected 30
Table 18 - Scaling Limits per Control Source 31
Table 19 - AX031501 Connector Pinout 32
Table 20 - LSS Baudrate Indices. 36
Table 21 - Pre-Defined Error Field Codes 40
Figure 1- Hardware Functional Block Diagram 9
Figure 2 - Logic Functional Block Diagram 10
Figure 3 - Magnetic Input Objects 11
Figure 4 - Input Debouncing 12
Figure 5 - Analog Input Linear Scaling FV to PV 14
Figure 6 - Lookup Table Objects 16
Figure 7 - Lookup Table Defaults with Ramp and Step Responses 18
Figure 8 - Lookup Table Examples to Setup for Dual-Slope Joystick Deadband Response 18
Figure 9 - Logic Block Objects 20
Figure 10 - Logic Block Flowchart 22
Figure 11 - Math Function Block Objects 26
Figure 12 - Miscellaneous Objects 28
Figure 13 - Analog source to Digital input 31
Figure 14 - AX031501 Housing Dimensions 32

REFERENCES

[DS-301] CiA DS-301 V4.1 - CANopen® Application Layer and Communication Profile. CAN in Automation 2005
[DS-305] CiA DS-305 V2.0 - Layer Setting Service (LSS) and Protocols. CAN in Automation 2006
[DS-404] CiA DS-404 V1.2 - CANopen® profile for Measurement Devices and Closed Loop Controllers. CAN in Automation 2002

These documents are available from the CAN in Automation e.V. website, at: http:/www.cancia.org/

1. OVERVIEW OF CONTROLLER

Figure 1- Hardware Functional Block Diagram
The Magnetic Pick-up Input CANopen® controller (MAG-IN- CO) is designed for measuring a single frequency input and providing the measurement result to CANopen® network. The controller is widely configurable through CANopen® Objects. With its sophisticated control algorithms, Input measurement can be adjusted to serve wide variety of custom applications.
The Magnetic input picks up frequencies from 0.5 Hz to 50 kHz or 30 to 3000000 RPM . In addition to basic frequency measurement the MAG-IN-CO can be configured to measure the number of pulses received in defined time window or time elapsed to receive defined number of pulses.

Logical (software) function blocks are depicted in Figure 2. To produce desired control 6 Lookup Tables, 2 Programmable Control Logics and 4 Mathematical Function Blocks are provided. All functional blocks are independent from one another, but can be programmed to interact in numerous ways. The function blocks are outlined in following sections. All objects are user-
configurable using standard commercially available tools that can interact with a CANopen® Object Dictionary via an .EDS file.

Figure 2 - Logic Functional Block Diagram

1.1. Input Function Blocks

Figure 3 - Magnetic Input Objects

Object 6112h, Al Operating Mode determines whether the MI function block is associated with an input. The options for object 6112h are shown in Table 1. No values other than what are shown here will be accepted.

Value	Meaning
0	Channel Off
1	Normal Operation

Table 1 - Object 6112h - Al Operating Mode Options

The most important object associate with the MI function block is object 6110h AI Sensor Type. By changing this value, other objects will be automatically updated by the controller. The options for object 6110 h are shown in Table 2, and no values other than what are shown here will be accepted.

Value	Meaning
60	Frequency Input (or RPM)
10000	Counter (Pulse Count Reset)
10001	Counter (Time Window)
10002	Counter (Pulse Window)

Table 2 - Object 6110h - AI Sensor Type Options

By default, the input is setup to measure frequency in Hz . Frequency measurement can be changed to RPM, by setting object 2101h AI Number of Pulses per Revolution to a non-zero value. With other input types this object will be ignored.

There are three different types of a Counter input mode: Counter (Pulse Count Reset), Counter (Time Window), Counter (Pulse Window).

Counter (Pulse Count Reset) is a Counter input type in which the output data of the input function block is the number of pulses measured. The pulses will continue to increment in count as they are measured until the Pulse Count to Reset Counter value is reached at which the counter will reset back to 0 .

Counter (Time Window) is a Counter input type in which a Pulse Count in Time Window is selected (in milliseconds). The output of the input block will be the amount of pulses measured within that time frame.

Object 2103h Al Debounce Filter is applied to the input before the state is read by the processor. The options for object 2103h are shown in Table 3, with the default bolded.

Value	Meaning
0	Filter Disabled
1	Filter 111ns
2	Filter 1.78 us
3	Filter 14.22 us

Table 3 - Object 2103h Debounce Filter Options

Figure 4 - Input Debouncing

Regardless of type, all analog inputs can be further filtered once the raw data has been measured. Object 61A0h AI Filter Type determines what kind of filter is used per Table 4. By default, additional software filtering is disabled.

Value	Meaning
$\mathbf{0}$	No Filter
1	Moving Average
2	Repeating Average

Table 4 - Object 61A0h - Al Filter Type Options
Measured input data from magnetic input can be filtered to form desired CAN message data. Input filters are configured with "Filter Type" and "Filter Constant" setpoints.
"Filter Type" setpoint defines the type of software filter used. Setpoint options are 'No Filtering', 'Moving Average' and 'Repeating Average'. The 'No Filtering' option applies no filtering to the measured input data. The 'Moving Average option applies the transfer function below to the measured input data, where Value is the current value of the CAN message data, Valuen-1 is the previous CAN message data and Filter Constant is the value of the "Filter Constant setpoint".
Object 61A1h Al Filter Constant is used with all three types of filters as per the formulas below:

Calculation with no filter:
Value $=$ Input
The data is simply a 'snapshot' of the latest value measured by the ADC or timer.

Equation 1 - Moving Average Transfer Function:

Value $_{N}=$ Value $\left._{N-1}+\frac{(\text { Input- Value }}{N-1}\right)$
This filter is called every 1 ms . The value FilterConstant stored in object 61 A 1 h is 10 by default.

Equation 2 - Repeating Average Transfer Function:

Value $=\frac{\sum_{0}^{N} \text { Input }_{N}}{\mathrm{~N}}$
At every reading of the input value, it is added to the sum. At every N^{th} read, the sum is divided by N , and the result is the new input value. The value and counter will be set to zero for the next read. The value of N is stored in object 61 A 1 h , and is 10 by default. This filter is called every 1 ms .

The value from the filter is shifted according to read-only object 2102h AI Decimal Digits FV and then written to read-only object 7100h Al Input Field Value.

The value of 2102 h will depend on the AI Sensor Type and Pulses per Revolution selected, and will be automatically updated per Table 6 when either 6110 h or 2101 h are changed. All other objects associated with the input field value also apply this object. These objects are 7120 h AI Scaling 1 FV, 7122 h AI Scaling 2 FV, 7148 h AI Span Start, 7149 h AI Span End, and 2111 h AI Error Clear Hysteresis. These objects are also automatically updated when the Type or Pulses per Rev are changed.

Sensor Type	Decimal Digits
Frequency:	$0[1 \mathrm{~Hz}]$
Frequency: RPM Mode	$0[1 \mathrm{RPM}]$
Counter (Pulse Count Reset)	$0[$ Pulses $]$
Counter (Time Window)	$0[$ Pulses $]$
Counter (Pulse Window)	$3[\mathrm{~ms}]$

Table 5 - Object 2102h - Al Decimal Digits FV Depending on Sensor Type

It is the AI Input FV which is used by the application for error detection, and as a control signal for other logic blocks (i.e. output control.) Object 7100h is mappable to a TPDO, and is mapped to TPDO1 by default.

Read-only object 7130h AI Input Process Value is also mappable. However, the default values for objects 7121 h AI Scaling 1 PV and 7123h AI Scaling 2 PV are set to equal 7120h and 7122h respectively, while object 6132h AI Decimal Digits PV is automatically initialize to equal 2102h. This means that the default relationship between the FV and PV is one-to-one, so object 7130h is not mapped to a TPDO by default.

Should a different linear relationship between what is measured versus what is sent to the CANopen® bus be desired, objects $6132 \mathrm{~h}, 7121 \mathrm{~h}$ and 7123 h can be changed. The linear relationship profile is shown in Figure 7 below. Should a non-linear response be desired, the lookup table function block can be used instead, as described in Section 1.2.

Figure 5 - Analog Input Linear Scaling FV to PV

As stated earlier, the FV scaling objects are automatically updated with the Sensor Type or Range changes. This is because objects 7120 h and 7122 h are not only used in a linear conversion from FV to PV as described above, but also as the minimum and maximum limits when the input is used to control another logic block. Therefore, the values in these objects are important, even when the AI Input PV object is not being used.

The AI Span Start and AI Span End objects are used for fault detection, so they too are automatically updated for sensible values as the Type/Range changes. The Error Clear Hysteresis object is also updated, as it too is measured in the same unit as the AI Input FV object.

Table 6 lists the default values that are loaded into objects $7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}, 7149 \mathrm{~h}$, and 2111h for each Sensor Type and Pulses per Rev combination. Recall that these objects all have the decimal digits applied to them as outlined in Table 7.

Sensor Type/ Input Range	7148h AI Span Start (i.e. Error Min)	7120h Al Scaling 1 FV (i.e. Input Min)	7122h Al Scaling 2 FV (i.e. Input Max)	7149h AI Span End (i.e. Error Max)	2111h Error Clear Hysteresis
Frequency	$0.1[\mathrm{~Hz}]$	$1[\mathrm{~Hz}]$	$5000[\mathrm{~Hz}]$	$6000[\mathrm{~Hz}]$	$50[\mathrm{~Hz}]$

Freq: RPM Mode	$500[1 \mathrm{RPM}]$	100 [1RPM]	3000 [1RPM]	$33000[1 \mathrm{RPM}]$	$10[1 \mathrm{RPM}]$
Counter (Pulse Count Reset)	0	0	30000	30000	0
Counter (Time Window)	0	0	30000	30000	0
Counter (Pulse Window)	0	0	30	30	0

Table 6 - Al Object Defaults Based on Sensor Type and Input Range

It might not be desired in a particular application for the automatic updating of objects when a key object is changed, i.e. Al Sensor Type. In this case, object 5550h Enable Automatic Updates can be set to FALSE (true by default) in which case changing an object will have no impact on any other objects. In this mode, the user must manually change all the objects for sensible values or the controller will not work as expected.

When changing these objects, Table 7 outlines the range constraints places on each based on the Sensor Type and Input Range combination selected. In all cases, the MAX value is the upper end of the range (i.e. 50000 Hz or) Object 7122 h cannot be set higher than MAX, whereas 7149 h can be set up to 110% of MAX. Object 2111 h on the other hand can only be set up to maximum value of 10% of MAX. Table 7 uses the base unit of the input, but recall the limits will also have object 2102h apply to them as per Table 5.

Sensor Type/ Pulses per Rev	7148h	7120h	7122h	7149h	2111h
Frequency	$\begin{gathered} \hline 0.0 \mathrm{~Hz} \text { to } \\ 7120 \mathrm{~h} \end{gathered}$	$\begin{gathered} 7148 \mathrm{~h} \text { to } 7122 \mathrm{~h} \\ \text { If }(7148 \mathrm{~h}<0.5 \mathrm{~Hz}) 0.5 \mathrm{~Hz} \text { to } 7122 \mathrm{~h} \end{gathered}$	7120h to 7149h If(7149h>MAX) 7120h to MAX	$\begin{aligned} & 7122 \mathrm{~h} \text { to } \\ & 110 \% \text { of } \\ & \text { MAX } \end{aligned}$	10% of MAX
RPM	0 to 7120h	7148h to 7122h			
Counter					

Table 7 - AI Object Ranges Based on Sensor Type and Input Range
The last objects associated with the magnetic input block left to discuss are those associated with fault detection. Should the calculated input (after measuring and filtering) fall outside of the allowable range, as defined by the AI Span Start and AI Span End objects, an error flag will be set in the application if and only if object 2110h AI Error Detect Enabled is set to TRUE (1).
When (7100h AI Input FV < 7148h AI Span Start), an "Out of Range Low" flag is set. If the flag stays active for the 2112h AI Error Reaction Delay time, an Input Overload Emergency (EMCY) message will be added to object 1003h Pre-Defined Error Field. Similarly, when (7100h AI Input FV > 7149h AI Span End), an "Out of Range High" flag is set, and will create an EMCY message should it stay active throughout the delay period. In either case, the application will react to the EMCY message as defined by object 1029h Error Behaviour at the sub-index corresponding to an Input Fault. Refer to section 3.2.4 and 3.2.13 for more information about objects 1003h and 1029h.

Once the fault has been detected, the associate flag will be cleared only once the input comes back into range. Object 2111h AI Error Clear Hysteresis is used here so that the error flag will not be set/cleared continuously while the AI Input FV hovers around the AI Span Start/End value.

To clear an "Out of Range Low" flag, Al Input FV >= (AI Span Start + AI Error Clear Hysteresis)
To clear an "Out of Range High" flag, AI Input FV $<=$ (AI Span End - AI Error Clear Hysteresis)
Both flags cannot be active at once. Setting either one of these flags automatically clears the other.

1.2. Lookup Table Function Block

The lookup table (LTz) function blocks are not used by default.

Figure 6 - Lookup Table Objects
Lookup tables are used to give an output response of up to 10 slopes per input. The array size of the objects 3yz5h LTyz Point Response, 3yz6h LTyz Point X-Axis PV and 3yz7h Point Y-Axis PV shown in the block diagram above is therefore 11.

Note: If more than 10 slopes are required, a Programmable Logic Block can be used to combine up to three tables to get 30 slopes, as is described in Section 1.3.

A parameter that will affect the function block is object $3 y z 5 h$ sub-index 1 which defines the " X Axis Type". By default, the tables have a 'Data Response' output (0). Alternatively, it can be selected as a 'Time Response’ (1).

There are two (or three) other key parameters that will affect how this function block will behave depending on the "X-Axis Type" chosen. If chosen 'Data Response', then the objects 3yz0h Lookup Table yz Input X-Axis Source and 3yz1h Lookup Table yz Input X-Axis Number together define the control source for the function block. When it is changed, the table values in object $3 y z 6 h$ need to be updated with new defaults based on the X-Axis source selected as described in Tables 15 and 16. If however, the "X-Axis Type" is chosen to be 'Time Response', an additional parameter is taken into consideration - object 3yz2h, Lookup Table yz Auto Repeat. These will be described in more detail in Section 1.2.4.

1.2.1. X-Axis, Input Data Response

In the case where the "X-Axis Type" = 'Data Response', the points on the X-Axis represents the data of the control source.

The constraint on the X-Axis data is that the next index value is greater than or equal to the one below it, as shown in the equation below. Therefore, when adjusting the X -Axis data, it is recommended that X_{11} is changed first, then lower indexes in descending order.

MinInputRange $<=X_{1}<=X_{2}<=X_{3}<=X_{4}<=X_{5}<=X_{6}<=X_{7}<=X_{8}<=X_{9}<=X_{10}<=X_{11}<=$ MaxInputRange
As stated earlier, MinInputRange and MaxInputRange will be determined by the scaling objects associated with X-Axis Source that has been selected, as outlined in Table 18.

1.2.2. Y-Axis, Lookup Table Output

By default, it is assumed that the output from the lookup table function block will be a percentage value in the range of 0 to 100 .

In fact, so long as all the data in the Y -Axis is $0<=\mathrm{Y}[i]<=100$ (where $\mathrm{i}=1$ to 11) then other function blocks using the lookup table as a control source will have 0 and 100 as the Scaling 1 and Scaling 2 values used in linear calculations shown in Table 18.

However, the Y-Axis has no constraints on the data that it represents. This means that inverse, or increasing/decreasing or other responses can be easily established. The Y-Axis does not have to be a percentage output, but could represent full scale process values instead.

In all cases, the controller looks at the entire range of the data in the Y-Axis sub-indexes, and selects the lowest value as the MinOutRange and the highest value as the MaxOutRange. So long as they are not both within the 0 to 100 range, they are passed directly to other function blocks as the limits on the lookup table output. (i.e. Scaling 1 and Scaling 2 values in linear calculations.)

Even if some of the data points are 'Ignored' as described in Section1.2.3, they are still used in the Y-Axis range determination. If not all the data points are going to be used, it is recommended that Y10 be set to the minimum end of the range, and Y11 to the maximum first. This way, the user can get predictable results when using the table to drive another function block, such as an analog output.

1.2.3. Point to Point Response

By default, all six lookup tables have a simple linear response from 0 to 100 in steps of 10 for both the X and Y axes. For a smooth linear response, each point in the 30z5h LTz Point Response array is setup for a 'Ramp To' output.

Alternatively, the user could select a 'Step To' response for $30 z 4 h$, where $\mathrm{N}=2$ to 11. In this case, any input value between X_{N-1} to X_{N} will result in an output from the lookup table function block of Y_{N}. (Recall: LTz Point Response sub-index 1 defines the X-Axis type)

Figure 7 shows the difference between these two response profiles with the default settings.

Figure 7 - Lookup Table Defaults with Ramp and Step Responses
Lastly, any point except $(1,1)$ can be selected for an 'Ignore' response. If LTz Point Response sub-index \mathbf{N} is set to ignore, then all points from $\left(\mathrm{X}_{\mathrm{N}}, \mathrm{Y}_{\mathrm{N}}\right)$ to $\left(\mathrm{X}_{11}, \mathrm{Y}_{11}\right)$ will also be ignored. For all data greater than X_{N-1}, the output from the lookup table function block will be $\mathrm{Y}_{\mathrm{N}-1}$.

A combination of ‘Ramp To’, 'Jump To’ and 'Ignore' responses can be used to create an application specific output profile. An example of where the same input is used as the X-Axis for two tables, but where the output profiles 'mirror' each other for a deadband joystick response is shown in Figure 8. The example shows a dual slope percentage output response for each side of the deadband, but additional slopes can be easily added as needed. (Note: In this case, since the analog outputs are responding directly to the profile from the lookup tables, both would have object 2342h AO Control Response set to a 'Single Output Profile.')

Figure 8 - Lookup Table Examples to Setup for Dual-Slope Joystick Deadband Response

To summarize, Table 8 outlines the different responses that can be selected for object $30 z 4 \mathrm{~h}$, both for the X -Axis type and for each point in the table.

Sub-Index	Value	Meaning
1	0	Data Response (X-Axis Type)
		Ignore (this point and all following it)
2 to 11	1	Time Response (X-Axis Type)
		Ramp To (this point)
2 to 11	2	N/A (not an allowed option)
2 to 11		Jump To (this point)

Table 8 - LTyz Point Response Options

1.2.4. X-Axis, Time Response

A lookup table can also be used to get a custom output response where the "X-Axis Type" is a 'Time Response'. When this is selected, the X-Axis now represents time, in units of milliseconds, while the Y-Axis still represents the output of the function block.

With this response, the sequence will start depending on two parameters:

- Lookup Table yz Input X-Axis Source Object 3yzOh and;
- Lookup Table yz Auto Repeat Object 3yz2h

By default, the "Auto Repeat" object is set to FALSE (0). In this case, the lookup table will react in the following way:

The X -Axis control source is treated as a digital input. When the control input is ON , the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the output will remain at the last output at the end of the profile until the control input turns OFF.

However, when the "Auto Repeat" object is set to TRUE (1), the lookup table will react in the following way:

When the control input is ON, the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the lookup table will revert back to the first point in the table and Auto Repeat the sequence. This will continue for as long as the input remains ON. Once the input turns OFF, the lookup table sequence will stop and the output of the lookup table is zero.

Note: When the control input is OFF, the output is always at zero. When the input comes ON, the profile will ALWAYS start at position $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ which is 0 output for 0 ms .

In a time response, the data in object 30z6h LTyz Point X-Axis PV is measured in milliseconds, and object 3yz3h LTyz X-Axis Decimal Digits PV is automatically set to 0 . A minimum value of 1 ms must be selected for all points other than sub-index 1 which is automatically set to [0,0]. The interval time between each point on the X-axis can be set anywhere from 1 ms to 24 hours. [86,400,000 ms]

1.3. Programmable Logic Function Block

The programmable logic blocks (LB(3-x)) functions are not used by default.

Figure 9 - Logic Block Objects

This function block is obviously the most complicated of them all, but very powerful. Any LBx (where $X=4$ to 6) can be linked with up to three lookup tables, any one of which would be selected only under given conditions. Any three tables (of the available 6) can be associated with the logic, and which ones are used is fully configurable on object $3 \times 01 \mathrm{LB}(3-x)$ Lookup Table Number.
Should the conditions be such that a particular table (A, B or C) has been selected as described in Section 1.3.2, then the output from the selected table, at any given time, will be passed directly to LB(3-x)'s corresponding sub-index X in read-only mappable object 3320h Logic Block Output PV. The active table number can read from read-only object 3310h Logic Block Selected Table.

Note: In this document, the term LB(3-x) refers to Logic Blocks 1 to 2 . Due to the CANopen $®$ Object indices, Logic Block 1 begins at 3401 h where x, in this case, is 4.

Therefore, an LBx allows up to three different responses to the same input, or three different responses to different inputs, to become the control for another function block. Here, the "Control Source" for the reactive block would be selected to be the 'Programmable Logic Function Block,' as described in Section 1.3.2.

In order to enable any one of logic blocks, the corresponding sub-index in object 3300h Logic Block Enable must be set to TRUE. They are all disabled by default.

Logic is evaluated in the order shown in Figure 10. Only if a lower indexed table (A, B, C) has not been selected will the conditions for the next table be looked at. The default table is always selected as soon as it is evaluated. It is therefore required that the default table always be the highest index in any configuration.

Figure 10 - Logic Block Flowchart

1.3.1. Conditions Evaluation

The first step in determining which table will be selected as the active table is to first evaluate the conditions associated with a given table. Each table has associated with it up to three conditions that can be evaluated. Conditional objects are custom DEFSTRUCT objects defined as shown in Table 8.

Index	Sub-Index	Name	Data Type
$3 x^{*} z^{*}$	0	Highest sub-index supported	UNSIGNED8
	1	Argument 1 Source	UNSIGNED8
	2	Argument 1 Number	UNSIGNED8
	3	Argument 2 Source	UNSIGNED8
	4	Argument 2 Number	UNSIGNED8
	5	Operator	UNSIGNED8

*Logic Block X Function Y Condition Z, where $X=4$ to $7, Y=A$, B or C, and $Z=1$ to 3

Table 9 - LB(3-x) Condition Structure Definition

Objects $3 \times 11 \mathrm{~h}, 3 \times 12 \mathrm{~h}$ and $3 \times 13 \mathrm{~h}$ are the conditions evaluated for selecting Table A . Objects $3 \times 21 \mathrm{~h}, 3 \times 22 \mathrm{~h}$ and $3 \times 23 \mathrm{~h}$ are the conditions evaluated for selecting Table B. Objects $3 \times 31 \mathrm{~h}, 3 \times 32 \mathrm{~h}$ and $3 \times 33 \mathrm{~h}$ are the conditions evaluated for selecting Table C.

Argument 1 is always a logical output from another function block, as listed in Table 11. As always, the input is a combination of the functional block objects $3 x y z h$ sub-index 1 "Argument 1 Source" and "Argument 1 Number."

Argument 2 on the other hand, could either be another logical output such as with Argument 1, OR a constant value set by the user. To use a constant as the second argument in the operation, set "Argument 2 Source" to 'Constant Function Block', and "Argument 2 Number" to the desired sub-index. When defining the constant, make sure it uses the same resolution (decimal digits) as the Argument 1 input.

Argument 1 is evaluated against Argument 2 based on the "Operator" selected in sub-index 5 of the condition object. The options for the operator are listed in Table 10, and the default value is always 'Equal' for all condition objects.

Value	Meaning
$\mathbf{0}$	$=$ =, Equal
1	$!=$, Not Equal
2	$>$, Greater Than
3	>=, Greater Than or Equal
4	<, Less Than
5	<=, Less Than or Equal

Table 10 - LB(3-x) Condition Operator Options
By default, both arguments are set to 'Control Source Not Used' which disables the condition, and automatically results in a value of N/A as the result. Although is generally considered that each condition will be evaluated as either TRUE or FALSE, the reality is that there could be four possible results, as described in Table 11.

Value	Meaning	Reason
0	False	(Argument 1) Operator (Argument 2) = False

1	True	(Argument 1) Operator (Argument 2) = True
2	Error	Argument 1 or 2 output was reported as being in an error state
3	Not Applicable	Argument 1 or 2 is not available (i.e. set to 'Control Source Not Used')

Table 11 - LB(3-x) Condition Evaluation Results

1.3.2. Table Selection

In order to, determine if a particular table will be selected, logical operations are performed on the results of the conditions as determined by the logic in Section 1.3.1. There are several logical combinations that can be selected, as listed in Table 12. The default value for object $3 \times 02 \mathrm{~h}$ LB(3$\mathbf{x)}$ Function Logical Operator is dependent on the sub-index. For sub-index 1 (Table A) and 2 (Table B), the 'Cnd1 And Cnd2 And Cnd3' operator is used, whereas sub-index 3 (Table C) is setup as the 'Default Table" response.

Value	Meaning
0	Default Table
1	Cnd1 And Cnd2 And Cnd3
2	Cnd1 Or Cnd2 Or Cnd3
3	(Cnd1 And Cnd2) Or Cnd3
4	(Cnd1 Or Cnd2) And Cnd3

Table 12 - LB(3-x) Function Logical Operator Options

Not every evaluation is going to need all three conditions. The case given in the earlier section, for example, only has one condition listed, i.e. that the Engine RPM be below a certain value. Therefore, it is important to understand how the logical operators would evaluate an Error or N/A result for a condition, as outlined in Table 13.

Logical Operator	Select Conditions Criteria	
Default Table	Associated table is automatically selected as soon as it is evaluated.	
Cnd1 And Cnd2 And Cnd3	Should be used when two or three conditions are relevant, and all must be True to select the table. If any condition equals False or Error, the table is not selected. An N/A is treated like a True. If all three conditions are True (or N/A), the table is selected. If((Cnd1==True) \&\&(Cnd2==True)\&\&(Cnd3==True)) Then Use Table	
Cnd1 Or Cnd2 Or Cnd3	Should be used when only one condition is relevant. Can also be used with two or three relevant conditions. If any condition is evaluated as True, the table is selected. Error or N/A results are treated as False If((Cnd1==True) \\|l (Cnd2==True) \|l (Cnd3==True)) Then Use Table	
(Cnd1 And Cnd2) Or Cnd3	To be used only when all three conditions are relevant. If both Condition 1 and Condition 2 are True, OR Condition 3 is True, the table is selected. Error or N/A results are treated as False If(((Cnd1==True)\&\&(Cnd2==True)) \\| (Cnd3==True)) Then Use Table	
(Cnd1 Or Cnd2) And Cnd3	To be used only when all three conditions are relevant.	

	If Condition 1 And Condition 3 are True, OR Condition 2 And Condition 3 are True, the table is selected. Error or N/A results are treated as False	
	$\operatorname{If}(((C n d 1==$ True $) \\|(C n d 2==$ True $)) \& \&(C n d 3==$ True $))$ Then Use Table	

Table 13 - LB(3-x) Conditions Evaluation Based on Selected Logical Operator
If the result of the function logic is TRUE, then the associated lookup table (see object $4 \times 01 \mathrm{~h}$) is immediately selected as the source for the logic output. No further conditions for other tables are evaluated. For this reason, the 'Default Table' should always be setup as the highest letter table being used (A, B or C). If no default response has been setup, the Table A automatically becomes the default when no conditions are true for any table to be selected. This scenario should be avoided whenever possible to not to result in unpredictable output responses.

The table number that has been selected as the output source is written to sub-index X of readonly object 4010h Logic Block Selected Table. This will change as different conditions result in different tables being used.

1.3.3. Logic Block Output

Recall that Table Y, where $Y=A$, B or C in the LB(3-x) function block does NOT mean lookup table 1 to 3 . Each table has object $3 x 01$ h LB(3-x) Lookup Table Number which allows the user to select which lookup tables they want associated with a particular logic block. The default tables associated with each logic block are listed in Table 14.

Programmable Logic Block Number	Table A - Lookup Table Block Number	Table B - Lookup Table Block Number	Table C - Lookup Table Block Number
1	1	2	3
2	4	5	6

Table 14 - LB(3-x) Default Lookup Tables
If the associated Lookup Table YZ (where YZ equals 3310h sub-index X) does not have an " X Axis Source" selected, then the output of $L B(3-x)$ will always be "Not Available" so long as that table is selected. However, should LTyz be configured for a valid response to an input, be it Data or Time, the output of the LTyz function block (i.e. the Y-Axis data that has been selected based on the X -Axis value) will become the output of the LB(3-x) function block so long as that table is selected.

The $\operatorname{LB}(3-x)$ output is always setup as a percentage, based on the range of the Y -Axis for the associated table (see Section 1.2.2) It is written to sub-index X of read-only object 3320h Logic Block Output PV with a resolution of 1 decimal place.

1.4. Math Function Block

There are four mathematic function blocks that allow the user to define basic algorithms. Math function block $Z=1$ to 4 will be enabled based on sub-index Z in object 4000 hath Enable.

Figure 11 - Math Function Block Objects
A math function block can take up to four input signals, as listed in Table 16 in Section 1.6. Each input is then scaled according the associated scaling and gain objects. A "Math Input X " is determined by the corresponding sub-index $\mathrm{X}=1$ to 4 of the objects 4 y 00 h Math Y Input Source and $4 y 01 \mathrm{~h}$ Math Y Input Number. Here, $\mathrm{y}=1$ to 4 ; corresponding the Math 1- Math 4.

Inputs are converted into a percentage value based on objects 4y20h Math Y Scaling 1 FV and 4y22h Math Y Scaling 2 FV. Before being used in the calculation, these objects apply the resolution shift defined by object 4y02h Math Y Decimal Digits FV. As with any other function block using a control source for the X-Axis in a conversion, the scaling objects should be selected to match the values in the control's corresponding objects as per Table 18.

For additional flexibility, the user can also adjust object 4y40h Math Y Input Gain. This object has a fixed decimal digit resolution of 2 , and a range of -100 to 100. By default, each input has a gain of 1.0 .

For each input pair, the appropriate arithmetic or logical operation is performed on the two inputs, InA and InB, according the associated function in sub-index of InB in object 4y50h Math Y Operator. The list of selectable function operations is defined in Table 15.

0	$=$	True when $\operatorname{In} A$ Equals $\operatorname{In} B$
1	$!=$	True when $\operatorname{In} A$ Not Equal $\operatorname{In} B$
2	$>$	True when $\operatorname{In} A$ Greater Than $\operatorname{In} B$
3	$>=$	True when $\operatorname{In} A$ Greater Than or Equal $\operatorname{In} B$
4	$<$	True when $\operatorname{In} A$ Less Than $\operatorname{In} B$
5	$<=$	True when $\operatorname{In} A$ Less Than or Equal $\operatorname{In} B$
6	OR	True when $\operatorname{In} A$ or $\operatorname{In} B$ is True

7	AND	True when $\operatorname{In} A$ and $\ln B$ are True
8	XOR	True when $\operatorname{In} A / \ln B$ is True, but not both
9	+	Result $=\ln A$ plus $\operatorname{In} B$
10	-	Result $=\ln A$ minus $\operatorname{In} B$
11	X	Result $=\ln A$ times $\operatorname{In} B$
12	I	Result $=\ln A$ divided by InB
13	MIN	Result $=$ Smallest of $\operatorname{In} A$ and InB
14	MAX	Result $=$ Largest of $\ln A$ and $\operatorname{In} B$

Table 15 - Object 4y50h Math Function Operators
For Function 1, $\ln A$ and $\operatorname{In} B$ are Math Inputs 1 and 2, respectively.
For Function 2, $\operatorname{In} A$ is the result of Function 2 and InB is Math Input 3, respectively.
For Function 3, InA is the result of Function 3 and $\operatorname{In} B$ is Math Input 4, respectively.
For a valid result in each Function, both inputs must be non-zero value (other than 'Control Source Not Used'). Otherwise, the corresponding Function is ignored, and the "Output Data" for the math function block is the result of the earlier function scaled according to the output objects. For example, if Math Input 4 is not used, the math output would be the result of the Function 3 operation.

For logical operators (6 to 8), any SCALED input greater than or equal to 0.5 is treated as a TRUE input. For logic output operators (0 to 8), the result of the calculation for the function will always be 0 (FALSE) or 1 (TRUE).

Error data (i.e. input measured out of range) is always treated as a 0.0 input into the function.
For the arithmetic functions (9 to 14), it is recommended to scale the data such that the resulting operation will not exceed full scale (0 to 100\%) and saturate the output result.

When dividing, a zero InB value will always result is a zero output value for the associated function. When subtracting, a negative result will always be treated as a zero, unless the function is multiplied by a negative one, or the inputs are scaled with a negative coefficient first.

The resulting final mathematical output calculation is in the appropriate physical units using object 4021h Math Output Scaling 1 PV and 4023h Math Output Scaling 2 PV. These objects are also considered the Min and Max values of the Math Block output and apply the resolution shift defined by object 4032h Math Output Decimal Digits PV. The result is written to read-only object 4030h Math Output PV. These scaling objects should also be taken into account when the Math Function is selected as the input source for another function block, as outlined in Table 18.

1.5. Miscellaneous Function Block

There are some other objects available which have not yet been discussed, or mentioned briefly in passing (i.e. constants.) These objects are not necessarily associated with one another, but are all discussed here.

Figure 12 - Miscellaneous Objects

Extra RPDO Messages

Objects 2500h Extra Control Received PV, 2502h EC Decimal Digits PV, 2502h EC Scaling 1 PV and EC Scaling 2 PV are mentioned in Table 17. These objects allow for additional data received on a CANopen® RPDO to be mapped independently to various function blocks as a control source. The scaling objects are provided to define the limits of the data when it is used by another function block, as shown in Table 18.

Constant Values

Object 5010 h Constant Field Value is provided to give the user the option for a fixed value that can be used by other function blocks. Sub-index 1 is fixed as FALSE (0) and sub-index 2 is always TRUE (1). There are 13 other sub-indexes provided for user selectable values.

The constants are read as 32 -bit real (float) data, so no decimal digit object is provided. When setting up the constant, make sure to do it with the resolution of the object that will be compared with it.

The False/True constants are provided primarily to be used with the logic block. The variable constants are also useful with the logic or math blocks.

Fault Detection Objects

Object 5040h FD Field Value is a read only object containing the field values of the over temperature, over and under voltage. Object 5041 h FD Set Threshold sets the limit values for
which the faults occur when reached. When any of these thresholds are reached, the faults will clear when the values have lowered to values set in object 5042h FD Clear Threshold.

For the MAG-IN-CO controller to begin monitoring fault detections, object 5050h Error Check Detection determines which Fault Detection is enabled through 1 byte data as bits. Once a fault is detected, object 5051h Error Response Delay will determine how long the fault needs to be present to flag and error.

Automatic Update of Objects

Object 5550h Enable Automatic Updates allows for the controller to automatically update the objects related to the input to defaults when it is changed. By default, this object is set to TRUE, in which case the objects are set to their default values depending on the type selected.
On the other hand, when this object is FALSE, the objects are not set to defaults and are left with the same values previous to changing the type. In this case, these are to be configured manually.

Startup

The last object 5555 h Start in Operational is provided as a 'cheat' when the unit is not intended to work with a CANopen® network (i.e. a stand-alone control), or is working on a network comprised solely as slaves so the OPERATION command will never be received from a master. By default, this object is disabled (FALSE).

When using the MAG-IN-CO as a stand-alone controller where 5555 h is set to TRUE, it is recommended to disable all TPDOs (set the Event Timer to zero) so that it does not run with a continuous CAN error when not connected to a bus.

1.6. Internal Function Block Control Sources

The Magnetic Pick-up Input controller allows for internal function block sources to be selected from the list of the logical function blocks supported by the controller. As a result, any output from one function block can be selected as the control source for another. Keep in mind that not all options make sense in all cases, but the complete list of control sources is shown in Table 16.

Value	Meaning
0	Control Source Not Used (Ignored)
1	CANopen® Message (RPDO)
2	Input Function Block
3	Lookup Table Function Block
4	Programmable Logic Function Block
5	Mathematical Function Block
6	Constant Function Block
7	Power Supply Measured
8	Processor Temperature Measured

Table 16 - Control Source Options

In addition to a source, each control also has a number which corresponds to the sub-index of the function block in question. Table 17 outlines the ranges supported for the number objects, depending on the source that had been selected.

Control Source	Range	Object (Meaning)
Control Source Not Used	0	Ignored
CANopen® Message (RPDO)	1	2500h sub-index 1 (Extra Received PV 1)
	2	2500h sub-index 1 (Extra Received PV 2)
	3	2500h sub-index 2 (Extra Received PV 3)
	4	2500h sub-index 3 (Extra Received PV 4)
	5	2500h sub-index 4 (Extra Received PV 5)
	6	2500h sub-index 5 (Extra Received PV 6)
	7	2500h sub-index 6 (Extra Received PV 7)
	8	2500h sub-index 7 (Extra Received PV 8)
	9	2500h sub-index 8 (Extra Received PV 9)
	10	2500h sub-index 9 (Extra Received PV 10)
	11	2500h sub-index 10 (Extra Received PV 11)
	12	2500h sub-index 11 (Extra Received PV 12)
Input Function Block	1	7100h sub-index 1 or 6000h sub-index 1 bit 0
Constant Function Block	1	5010h sub-index 1 (always FALSE)
	2	5010h sub-index 2 (always TRUE)
	3	5010h sub-index 3 (Constant FV 3)
	4	5010h sub-index 4 (Constant FV 4)
	5	5010h sub-index 5 (Constant FV 5)
	6	5010h sub-index 6 (Constant FV 6)
	7	5010h sub-index 7 (Constant FV 7)
	8	5010h sub-index 8 (Constant FV 8)
	9	5010h sub-index 9 (Constant FV 9)
	10	5010h sub-index 10 (Constant FV 10)
	11	5010h sub-index 11 (Constant FV 11)
	12	5010h sub-index 12 (Constant FV 12)
	13	5010h sub-index 13 (Constant FV 13)
	14	5010h sub-index 14 (Constant FV 14)
	15	5010h sub-index 15 (Constant FV 15)
Lookup Table Function Block	1	3017h (Lookup Table 1 Output Y-Axis PV)
	2	3027h (Lookup Table 2 Output Y-Axis PV)
	3	3037h (Lookup Table 3 Output Y-Axis PV)
	4	3047h (Lookup Table 4 Output Y-Axis PV)
	5	3057h (Lookup Table 5 Output Y-Axis PV)
	6	3067h (Lookup Table 6 Output Y-Axis PV)
Mathematical Function Block	1	4350h sub-index 1 (Math Output PV 1)
	2	4350h sub-index 2 (Math Output PV 2)
	3	4350h sub-index 3 (Math Output PV 3)
	4	4350h sub-index 4 (Math Output PV 4)
Programmable Logic Function Block	1	3xy7h (Lookup Table Selected by Logic 1)
	2	3xy7h (Lookup Table Selected by Logic 2)
Processor Temperature Measured	N/A	5040h (Power Supply FV) sub-index 1
Power Supply Measured	N/A	5040h (Temperature FV) sub-index 2

Table 17 - Control Number Options Depending on Source Selected

When using any control source as the X-Axis input to a function block, the corresponding scaling limits are defined as per Table 18. It is the responsibility of the user to make sure that the scaling objects for any function block are setup appropriately depending on the source selected for the XAxis input.

Control Source	Scaling 1	Scaling 2	Dec Digits
CANopen® Message - Num 1 to 12	2520 h	2522 h	2502 h
Input Function Block	7120 h	7122 h	6132 h
Constant Function Block	N/A	N/A	N/A (float)
Lookup Table yz Function Block (where yz $=01$ to 6)	0 or lowest from 3yz6h	100 or highest from 3yz6h (**)	$3 y z 3 \mathrm{~h}$
Mathematical Function	4021 h	4023 h	4032 h
Programmable Logic Function	0%	100%	1 (fixed)
Power Supply Measured	N/A	N/A	1 (fixed)
Processor Temperature Measured	N/A	N/A	1 (fixed)

(*) - Whichever value is smaller; (**) - Whichever value is larger
Table 18 - Scaling Limits per Control Source

Figure 13 - Analog source to Digital input

2. INSTALLATION INSTRUCTIONS

2.1. Dimensions and Pinout

The MAG-IN-CO Controller is packaged in an ultra-sonically welded plastic housing. The assembly carries an IP67 rating.

molded in Deutsch IPD DT04-6P receptacle mates with: Deutsch IPD DT06-6S

Figure 14 - AX031501 Housing Dimensions

Pin \#	Description
1	BATT +
2	Input +
3	CAN_H
4	CAN_L
5	Input -
6	BATT-

Table 19 - AX031501 Connector Pinout

2.2. Mounting Instructions

NOTES \& WARNINGS

- Do not install near high-voltage or high-current devices.
- Note the operating temperature range. All field wiring must be suitable for that temperature range.
- Install the unit with appropriate space available for servicing and for adequate wire harness access $(15 \mathrm{~cm})$ and strain relief (30 cm).
- Do not connect or disconnect the unit while the circuit is live, unless the area is known to be non-hazardous.

MOUNTING

Mounting holes are sized for \#8 or M4 bolts. The bolt length will be determined by the end-user's mounting plate thickness. The mounting flange of the controller is 0.425 inches (10.8 mm) thick.

If the module is mounted without an enclosure, it should be mounted vertically with connectors facing left or right to reduce likelihood of moisture entry.

The CAN wiring is considered intrinsically safe. The power wires are not considered intrinsically safe and so in hazardous locations they need to be located in conduit or conduit trays at all times. The module must be mounted in an enclosure in hazardous locations for this purpose.

No wire or cable harness should exceed 30 meters in length. The power input wiring should be limited to 10 meters.

All field wiring should be suitable for the operating temperature range.
Install the unit with appropriate space available for servicing and for adequate wire harness access (6 inches or 15 cm) and strain relief (12 inches or 30 cm).

NETWORK TERMINATION

According to the CAN standard, it is necessary to terminate the network with external termination resistors. The resistors are 120 Ohm, 0.25 W minimum, metal film or similar type. They should be placed between CAN_H and CAN_L terminals at both ends of the network.

CONNECTIONS

Use the following TE Deutsch mating plugs to connect to the integral receptacles. Wiring to these mating plugs must be in accordance with all applicable local codes. Suitable field wiring for the rated voltage and current must be used. The rating of the connecting cables must be at least $85^{\circ} \mathrm{C}$. For ambient temperatures below $-10^{\circ} \mathrm{C}$ and above $+70^{\circ} \mathrm{C}$, use field wiring suitable for both minimum and maximum ambient temperature.

Refer to the respective TE Deutsch datasheets for usable insulation diameter ranges and other instructions.

Receptacle Contacts	Mating Sockets as appropriate (Refer to www.laddinc.com for more information on the contacts available for this mating plug.)
Mating Connector	DT06-06S, 1 W6S, 6 0462-201-16141

3. CANOPEN® OBJECT DICTIONARY

The CANopen® object dictionary of the MAG-IN-CO Controller is based on CiA device profile DS404 V1.2 (device profile for measurement devices and Closed Loop Controllers). The object dictionary includes Communication Objects beyond the minimum requirements in the profile, as well as several manufacturer-specific objects for extended functionality.

3.1. Node ID and Baud rate

By default, the MAG-IN-CO Controller ships factory programmed with a Node ID = 127 (0x7F) and with Baud rate $=125 \mathrm{kbps}$.

3.1.1. LSS Protocol to Update

The only means by which the Node-ID and Baud rate can be changed is to use Layer Settling Services (LSS) and protocols as defined by CANopen® standard DS-305.

Follow the steps below to configure either variable using LSS protocol. If required, please refer to the standard for more detailed information about how to use the protocol

3.1.1.1. \quad Setting Node-ID

- Set the module state to LSS-configuration by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	0×04	(cs=4 for switch state global)
Data 1	0×01	(switches to configuration state)

- Set the Node-ID by sending the following message:

Item	Value	
COB-ID	0x7E5	
Length	2	
Data 0	0×11	(cs=17 for configure node-id)
Data 1	Node-ID	(set new Node-ID as a hexadecimal number)

- The module will send the following response (any other response is a failure).

Item	Value
COB-ID	$0 \times 7 \mathrm{E} 4$
Length	3
Data 0	$0 \times 11 \quad$ (cs=17 for configure node-id)
Data 1	$0 \times 00 \quad$
Data 2	0×00

- Save the configuration by sending the following message:

Item	Value
COB-ID	0x7E5
Length	1
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)

- The module will send the following response (any other response is a failure)

Item	Value	
COB-ID	0x7E4	
Length	3	
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)	
Data 1	0×00	
Data 2	0×00	

- Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	0×04	(cs=4 for switch state global)
Data 1	0×00	(switches to waiting state)

3.1.1.2. Setting Baudrate

- Set the module state to LSS-configuration by sending the following message:

Item	Value	
COB-ID	$0 \times 7 \mathrm{E} 5$	
Length	2	
Data 0	0×04	(cs=4 for switch state global)
Data 1	0×01	(switches to configuration state)

- Set the baudrate by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	3	
Data 0	0×13	(cs=19 for configure bit timing parameters)
Data 1	0×00	(switches to waiting state)
Data 2	Index	(select baudrate index per Table 32)

Index	Bit Rate	
$\mathbf{0}$	$1 \mathrm{Mbit} / \mathrm{s}$	
$\mathbf{1}$	$800 \mathrm{kbit} / \mathrm{s}$	
$\mathbf{2}$	$500 \mathrm{kbit} / \mathrm{s}$	
$\mathbf{3}$	$250 \mathrm{kbit} / \mathrm{s}$	
$\mathbf{4}$	$125 \mathrm{kbit} / \mathrm{s}$	(default)
$\mathbf{5}$	reserved	(100 kbit/s)

$\mathbf{6}$	$50 \mathrm{kbit} / \mathrm{s}$
$\mathbf{7}$	$20 \mathrm{kbit} / \mathrm{s}$
$\mathbf{8}$	$10 \mathrm{kbit} / \mathrm{s}$

Table 20 - LSS Baudrate Indices

- The module will send the following response (any other response is a failure):

Item	Value	
COB-ID	0x7E4	
Length	3	
Data 0	$0 \times 13 \quad$ (cs=19 for configure bit timing parameters)	
Data 1	0×00	
Data 2	0×00	

- Activate bit timing parameters by sending the following message:

Item	Value
COB-ID	0x7E5
Length	3
Data 0	$0 \times 15 \quad$ (cs=19 for activate bit timing parameters)
Data 1	<delay_Isb>
Data 2	<delay_msb>

The delay individually defines the duration of the two periods of time to wait until the bit timing parameters switch is done (first period) and before transmitting any CAN message with the new bit timing parameters after performing the switch (second period). The time unit of switch delay is 1 ms.

- Save the configuration by sending the following message (on the NEW baudrate):

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	1	
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)	

- The module will send the following response (any other response is a failure):

Item	Value
COB-ID	$0 \times 7 \mathrm{E} 4$
Length	3
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)
Data 1	0×00
Data 2	0×00

- Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)

Item	Value
COB-ID	0x7E5
Length	2

Data 0	0×04	(cs=4 for switch state global)
Data 1	0×00	(switches to waiting state)

The following screen capture (left) shows the CAN data was sent (7E5h) and received (7E4h) by the tool when the baudrate was changed to 250 kbps using the LSS protocol. The other image (right) shows what was printed on an example debug RS-232 menu while the operation took place.

Between CAN Frame 98 and 99, the baudrate on the CAN Scope tool was changed from 125 to 250 kbps .

3.2. Communication Objects (DS-301 and DS-404)

The communication objects supported by the MAG-IN-CO Controller are listed in the following table. A more detailed description of some of the objects is given in the following subchapters. Only those objects that have device-profile specific information are described. For more information on the other objects, refer to the generic CANopen® protocol specification DS-301.

Index (hex)	Object	Object Type	Data Type	Access	PDO Mapping
1000	Device Type	VAR	UNSIGNED32	RO	No
1001	Error Register	VAR	UNSIGNED8	RO	No
1002	Manufacturer Status Register	VAR	UNSIGNED32	RO	No
1003	Pre-Defined Error Field	ARRAY	UNSIGNED32	RO	No
100C	Guard Time	VAR	UNSIGNED16	RW	No
100D	Life Time Factor	VAR	UNSIGNED8	RW	No
1010	Store Parameters	ARRAY	UNSIGNED32	RW	No

1011	Restore Default Parameters	ARRAY	UNSIGNED32	RW	No
1016	Consumer Heartbeat Time	ARRAY	UNSIGNED32	RW	No
1017	Producer Heartbeat Time	VAR	UNSIGNED16	RW	No
1018	Identity Object	RECORD		RO	No
1020	Verify Configuration	ARRAY	UNSIGNED32	RO	No
1029	Error Behaviour	ARRAY	UNSIGNED8	RW	No
1400	RPDO1 Communication Parameter	RECORD		RW	No
1401	RPDO2 Communication Parameter	RECORD		RW	No
1402	RPDO3 Communication Parameter	RECORD		RW	No
1403	RPDO4 Communication Parameter	RECORD		RW	No
1404	RPDO5 Communication Parameter	RECORD		RW	No
1405	RPDO6 Communication Parameter	RECORD		RW	No
1600	RPDO1 Mapping Parameter	RECORD		RO	No
1601	RPDO2 Mapping Parameter	RECORD		RO	No
1602	RPDO3 Mapping Parameter	RECORD		RO	No
1603	RPDO4 Mapping Parameter	RECORD		RO	No
1604	RPDO5 Mapping Parameter	RECORD		RO	No
1605	RPDO6 Mapping Parameter	RECORD		RO	No
1800	TPDO1 Communication Parameter	RECORD		RW	No
1801	TPDO2 Communication Parameter	RECORD		RW	No
1802	TPDO3 Communication Parameter	RECORD		RW	No
1803	TPDO4 Communication Parameter	RECORD		RW	No
1804	TPDO5 Communication Parameter	RECORD		RW	No
1805	TPDO6 Communication Parameter	RECORD		RW	No
1A00	TPDO1 Mapping Parameter	RECORD		RW	No
1A01	TPDO2 Mapping Parameter	RECORD		RW	No
1A02	TPDO3 Mapping Parameter	RECORD		RW	No
1A03	TPDO4 Mapping Parameter	RECORD		RW	No
1A04	TPDO5 Mapping Parameter	RECORD		RW	No
1A05	TPDO6 Mapping Parameter	RECORD		RW	No

3.2.1. Object 1000h: Device Type

This object contains information about the device type as per device profile DS-404. The 32-bit parameter is divided into two 16 -bit values, showing General and Additional information as shown below.
MSB

Additional Information $=0 \times E 020$	General Information $=0 \times 0194$ (404) LSB

DS-404 defines the Additional Information field in the following manner:
0000h = reserved
0001h = digital input block
0002h = analog input block
0004h = digital output block
0008h = analog output block
0010h = controller block (aka PID)
0020h = alarm block
0040h ... 0800h = reserved
1000h $=$ reserved
2000h = lookup table block (manufacturer-specific)

4000h = programmable logic block (manufacturer-specific)
8000h = miscellaneous block (manufacturer-specific)
Object Description

Index	1000h
Name	Device Type
Object Type	VAR
Data Type	UNSIGNED32

Entry Description

Access	RO
PDO Mapping	No
Value Range	0xE0200194
Default Value	OxE0200194

3.2.2. Object 1001h: Error Register

This object is an error register for the device. Any time there is an error detected by the MAG-IN-CO Controller, the Generic Error Bit (bit 0) is set. Only if there are no errors in the module will this bit will be cleared. No other bits in this register are used by the MAG-IN-CO Controller.

Object Description

Index	1001 h
Name	Error Register
Object Type	VAR
Data Type	UNSIGNED8

Entry Description

Access	RO
PDO Mapping	No
Value Range	00 h or 01h
Default Value	0

3.2.3. Object 1002h: Manufacturer Status Object

This object is used for manufacturer debug purposes.

3.2.4. Object 1003h: Pre-Defined Error Field

This object provides an error history by listing the errors in the order that they have occurred. An error is added to the top of the list when it occurs, and is immediately removed when the error condition has been cleared. The latest error is always at sub-index 1 , with sub-index 0 containing the number of errors currently in the list. When the device is in an error-free state, the value of subindex 0 is zero.

The error list may be cleared by writing a zero to sub-index 0 , which will clear all errors from the list, regardless of whether or not they are still present. Clearing the list does NOT mean that the module will return to the error-free behavior state if at least one error is still active.

The MAG-IN-CO Controller has a limitation of a maximum of 4 errors in the list. If the device registers more errors, the list will be truncated, and the oldest entries will be lost.

The error codes stored in the list are 32-bit unsigned numbers, consisting of two 16-bit fields. The lower 16-bit field is the EMCY error code, and the higher 16-bit field is a manufacturer-specific code. The manufacturer-specific code is divided into two 8-bit fields, with the higher byte indicating the error description, and the lower byte indicating the channel on which the error occurred.

MSB
LSB
Error Description Channel-ID \quad EMCY Error Code

If node-guarding is used (not recommended per the latest standard) and a lifeguard event occurs, the manufacturer-specific field will be set to 0×1000. On the other hand, if a heartbeat consumer fails to be received within the expected timeframe, the Error Description will be set to 0×80 and the Channel-ID (nn) will reflect the Node-ID of the consumer channel that was not producing. In this case, the manufacturer-specific field will therefore be 0x80nn. In both cases, the corresponding EMCY Error Code will be the Guard Error 0x8130.

If an RPDO is not received within the expected "Event Timer" period, an RPDO timeout will be flagged. Table 21 outlines the resulting Error Field Codes and their meanings.

Error Field Code	Error Description	Meaning	ID	Meaning	EMCY Code	Meaning
00000000h	EMCY Error Reset (fault no longer active)					
1001F001h	10h	Positive Overload (Out-of-range High)	01h	Magnetic Pickup	F001h	Input Overload
2001F001h	20h	Negative Overload (Out-of-range Low)	01h	Magnetic Pickup	F001h	Input Overload
10003100h	10h	Positive Overload (Vps Overvoltage)	00h	Unspecified	3100h	Device Voltage
20003100h	20h	Negative Overload (Vps Undervoltage)	00h	Unspecified	3100h	Device Voltage
10004200h	10h	Positive Overload (Over Temp)	00h	Unspecified	4200h	Device Temperature
00008100h	00h	RPDO Timeout	00h	Unspecified	8100h	Communication - generic
10008130h	10h	Lifeguard Event	00h	Unspecified	8130h	Lifeguard/Heartbeat Error
80nn8130h	80h	Heartbeat Timeout	nn	Node-ID	8130h	Lifeguard/Heartbeat Error
00008140h	00h	Bus OFF Event	00h	Unspecified	8400h	Bus OFF Recovery

Table 21 - Pre-Defined Error Field Codes

Object Description

Index	1003 h
Name	Pre-Defined Error Field
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RW
PDO Mapping	No
Value Range	0 to 15
Default Value	0

Sub-Index	1h to 15
Description	Standard error field
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

3.2.5. Object 100Ch: Guard Time

The objects at index 100Ch and 100Dh shall indicate the configured guard time respective to the life time factor. The life time factor multiplied with the guard time gives the life time for the life guarding protocol described in DS-301. The Guard Time value shall be given in multiples of ms, and a value of 0000h shall disable the life guarding.

It should be noted that this object, and that of 100Dh are only supported for backwards compatibility. The standard recommends that newer networks do not use the life guarding protocol, but rather heartbeat monitoring instead. Both life guarding and heartbeats can NOT be active simultaneously.

Object Description

Index	100Ch
Name	Guard Time
Object Type	VAR
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 65535
Default Value	0

3.2.6. Object 100Dh: Lifetime Factor

The life time factor multiplied with the guard time gives the life time for the life guarding protocol. A value of 00h shall disable life guarding.

Object Description

Index	100Dh
Name	Life time factor
Object Type	VAR
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 255
Default Value	0

3.2.7. Object 1010h: Store Parameters

This object supports the saving of parameters in non-volatile memory. In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate sub-index. The signature is "save".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

e	v	a	s
65 h	76 h	61 h	73 h

On reception of the correct signature to an appropriate sub-index, the MAG-IN-CO Controller will store the parameters in non-volatile memory, and then confirm the SDO transmission.

By read access, the object provides information about the module's saving capabilities. For all sub-indexes, this value is 1 h , indicating that the MAG-IN-CO Controller saves parameters on command. This means that if power is removed before the Store object is written, changes to the Object Dictionary will NOT have been saved in the non-volatile memory, and will be lost on the next power cycle.

Object Description

Index	1010h
Name	Store Parameters
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	8
Default Value	8

Sub-Index	1h
Description	Save all parameters
Access	RW
PDO Mapping	No
Value Range	0×65766173 (write access) 1h \quad (read access)
Default Value	1h \quad

Sub-Index	2 h
Description	Save communication parameters
Access	RW
PDO Mapping	No
Value Range	0x65766173 (write access) 1h (read access)
Default Value	1h

Sub-Index	3h
Description	Save application parameters

Access	RW
PDO Mapping	No
Value Range	0×65766173 (write access) $1 \mathrm{~h} \quad$ (read access)
Default Value	1h \quad

Sub-Index	4h
Description	Save manufacturer parameters
Access	RW
PDO Mapping	No
Value Range	0×65766173 (write access) 1h (read access)
Default Value	1h

3.2.8. Object 1011h: Restore Parameters

This object supports the restoring of the default values for the object dictionary in non-volatile memory. In order to avoid restoring of parameters by mistake, the device restores the defaults only when a specific signature is written to the appropriate sub-index. The signature is "load".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

d	a	0	LSB
64 h	61 h	6 Fh	6 Ch

On reception of the correct signature to an appropriate sub-index, the MAG-IN-CO Controller will restore the defaults in non-volatile memory, and then confirm the SDO transmission. The default values are set valid only after the device is reset or power-cycled. This means that the MAG-IN-CO Controller will NOT start using the default values right away, but rather continue to run from whatever values were in the Object Dictionary prior to the restore operation.

By read access, the object provides information about the module's default parameter restoring capabilities. For all sub-indexes, this value is 1 h , indicating that the MAG-IN-CO Controller restores defaults on command.

Object Description

Index	1011h
Name	Restore Default Parameters
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h
Description	Restore all default parameters
Access	RW

PDO Mapping	No
Value Range	0x64616F6C (write access), 1h (read access)
Default Value	1h

Sub-Index	2 h
Description	Restore default communication parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1 h

Sub-Index	3h
Description	Restore default application parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1h

Sub-Index	4 h
Description	Restore default manufacturer parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1h

3.2.9. Object 1016h: Consumer Heartbeat Time

The MAG-IN-CO Controller can be a consumer of heartbeat objects for a single module. This object defines the expected heartbeat cycle time for that module, and if set to zero, it is not used. When the object is nonzero, the time is a multiple of 1 ms , and monitoring will start after the reception of the first heartbeat from the module. If the MAG-IN-CO Controller fails to receive a heartbeat from a node in the expected timeframe, it will indicate a communication error, and respond as per object 1029h.

Bits	31-24	23-16	15-0
Value	Reserved 00h	Node-ID	Heartbeat time
Encoded as		UNSIGNED8	UNSIGNED16

Object Description

Index	1016h
Name	Consumer heartbeat time
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	1 to 4
Default Value	4

Sub-Index	1h
Description	Consumer heartbeat time
Access	RW
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

3.2.10.Object 1017h: Producer Heartbeat Time

The MAG-IN-CO Controller could be configured to produce a cyclical heartbeat by writing a non-zero value to this object. The value will be given in multiples of 1 ms , and a value of 0 shall disable the heartbeat.

Object Description

Index	1017h
Name	Producer heartbeat time
Object Type	VAR
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	10 to 65535
Default Value	0

3.2.11.Object 1018h: Identity Object

The identity object indicates the data of the MAG-IN-CO Controller, including vendor id, device id, software and hardware version numbers, and the serial number.

In the Revision Number entry at sub-index 3, the format of the data is as shown below

MSB		
Major revision number (object dictionary)		Hardware Rev
Object Description		
Index	1018h	
Name	Identity Object	
Object Type	RECORD	
Data Type	Identity Record	

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h
Description	Vendor ID
Access	RO
PDO Mapping	No
Value Range	0×00000055
Default Value	0×00000055 (Axiomatic)

Sub-Index	2h
Description	Product Code
Access	RO
PDO Mapping	No
Value Range	0xAA031501
Default Value	0xAA031501

Sub-Index	3h
Description	Revision Number
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0x00010000

Sub-Index	4h
Description	Serial Number
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No

3.2.12.Object 1020h: Verify Configuration

This object can be read to see what date the software (version identified in object 1018h) was compiled. The date is represented as a hexadecimal value showing day/month/year as per the format below. The time value at sub-index 2 is a hexadecimal value showing the time in a 24 hour clock
MSB
LSB

Day (in 1-Byte Hex)	Month (in 1-Byte Hex)	Year (in 2-Byte Hex)
00	00	Time (in 2-Byte Hex)

For example, a value of $0 x 30042014$ would indicate that the software was compiled on April $30^{\text {th }}, 2014$. A time value of $0 x 00001842$ would indicate it was compiled at $6: 42 \mathrm{pm}$.

Object Description

Index	1020h
Name	Verify configuration
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No

Value Range	2
Default Value	2

Sub-Index	1h
Description	Configuration date
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No

Sub-Index	2 h
Description	Configuration time
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No

3.2.13.Object 1029h: Error Behavior

This object controls the state that the MAG-IN-CO Controller will be set into in case of an error of the type associated with the sub-index.

A network fault is flagged when an RPDO is not received within the expected time period defined in the "Event Timer" of the associated communication objects, (see Section 3.2.14 for more information) or if a lifeguard or heartbeat message is not received as expected. Input faults are defined in Section 1.1, and Power Supply faults are described in Section 1.5.

For all sub-indexes, the following definitions hold true:

0 = Pre-Operational
1 = No State Change
2 = Stopped
(node reverts to a pre-operational state when this fault is detected) (node remains in the same state it was in when the fault occurred) (node goes into stopped mode when the fault occurs)

Object Description

Index	1029h
Name	Error Behaviour
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	0 to 6
Default Value	6

Sub-Index	1h
Description	Communication Fault
Access	RW
PDO Mapping	No

Value Range	See above
Default Value	0 (Pre-Operational)

Sub-Index	3h
Description	Analog Input Error
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)

Sub-Index	6h
Description	Fault Detection Error
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)

3.2.14.RPDO Behavior

Per the CANopen® standard DS-301, the following procedure shall be used for re-mapping, and is the same for both RPDOs and TPDOs.
a) Destroy the PDO by setting bit exists (most significant bit) of sub-index 01 h of the according PDO communication parameter to 1 b
b) Disable mapping by setting sub-index 00 h of the corresponding mapping object to 0
c) Modify the mapping by changing the values of the corresponding sub-indices
d) Enable mapping by setting sub-index 00h to the number of mapped objects
e) Create the PDO by setting bit exists (most significant bit) of sub-index 01 h of the according PDO communication parameter to 0 b

The MAG-IN-CO Controller can support up to six RPDO messages. All RPDOs on the MAG-IN-CO Controller use the similar default communication parameters, with the PDO IDs set according to the pre-defined connection set described in DS-301. Most RPDOs do not exist, there is no RTR allowed, they use 11-bit CANIDs (base frame valid) and they are all event-driven. While all six have valid default mappings defined (see below) only RPDO1 is enabled by default (i.e. RPDO exists).
RPDO1 Mapping at Object 1600h: Default ID 0x200 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	0×25000110	Extra Received 1 PV
2	0×25000210	Extra Received 2 PV
3	0×25000310	Extra Received 3 PV
4	0×25000410	Extra Received 4 PV

RTPDO2 Mapping at Object 1601h: Default ID 0x300 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	0×25000510	Extra Received 5 PV

2	0×25000610	Extra Received 6 PV
3	0×25000710	Extra Received 7 PV
4	0×25000810	Extra Received 8 PV

RPDO3 Mapping at Object 1602h: Default ID 0x400 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	0×25000910	Extra Received 9 PV
2	$0 \times 25000 \mathrm{~A} 10$	Extra Received 10 PV
3	$0 \times 25000 \mathrm{~B} 10$	Extra Received 11 PV
4	$0 \times 25000 \mathrm{C} 10$	Extra Received 12 PV

RPDO4 Mapping at Object 1603h: Default ID 0x500 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 25000 \mathrm{D} 10$	Extra Received 13 PV
2	$0 \times 25000 \mathrm{E} 10$	Extra Received 14 PV
3	0	
4	0	

None of them have the timeout feature enabled, i.e. the "Event Timer" on sub-index 5 is set to zero. When this is changed to a non-zero value, if the RPDO has not been received from another node within the time period defined (while in Operational mode), a network fault is activated, and the controller will go to the operational state define in Object 1029h sub-index 4.

Object Description

Index	1400h to 1403h
Name	RPDO communication parameter
Object Type	RECORD
Data Type	PDO Communication Record

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5

Sub-Index	1h			
Description	COB-ID used by RPDO			
Access	RW			
PDO Mapping	No			
Value Range	See value definition in DS-301			
Default Value	$4000000 \mathrm{~h}+$ RPDO1 + Node ID	\quad	\boldsymbol{X}	$\boldsymbol{R P D O x}$ ID
:---:	:---:	:---:		
1	0200 h			

	C0000000h + RPDOx + Node-ID		4	0500 h

Node-ID = Node-ID of the module. The RPDO COB-IDs are automatically updated if the Node-ID is changed by LSS protocol.
80000000h in the COB-ID indicates that the PDO does not exist (destroyed)
04000000h in the COB-ID indicates that there is no RTR allowed on the PDO

Sub-Index	2 h
Description	Transmission type
Access	RO
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	255 (FFh) $=$ Event Driven

Sub-Index	3h
Description	Inhibit Time
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	0

Sub-Index	4h
Description	Compatibility entry
Access	RW
PDO Mapping	No
Value Range	UNSIGNED8
Default Value	0

Sub-Index	5
Description	Event-timer
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	0

Recall: A non-zero event timer for an RPDO means that it will result in a network fault being flagged if it has not been received within this timeframe while in Operational mode.

3.2.15.TPDO Behavior

The MAG-IN-CO Controller can support up to eight TPDO messages. All TPDOs on the MAG-IN-CO Controller use the similar default communication parameters, with the PDO IDs set according to the predefined connection set described in DS-301. Most TPDOs do not exist, there is no RTR allowed, they use 11bit CAN-IDs (base frame valid) and they are all time-driven. While all have valid default mappings defined (see below) only TPDO1 to TPDO3 are enabled by default (i.e. TPDO exists).

TPDO1 Mapping at Object 1A00h: Default ID 0x180 + Node ID

Sub-Index	Value	Object
0	3	Number of mapped application objects in PDO

1	$0 x 71000110$	Magnetic Input Field Value
2	0	Not used by default
3	0	Not used by default
4	0	Not used by default

TPDO2 Mapping at Object 1A01h: Default ID 0x280 + Node ID

Sub-Index	Value	Object
0	3	Number of mapped application objects in PDO
1	0×50200020	Processor Temperature Field Value (measured)
2	0×50300020	Power Supply Field Value (measured)
3	0	Not used by default
4	0	Not used by default

TPDO3 Mapping at Object 1A02h: Default ID 0x380 + Node ID

Sub-Index	Value	Object
0	0	Number of mapped application objects in PDO
1	0	Not used by default
2	0	Not used by default
3	0	Not used by default
4	0	Not used by default

TPDO4 Mapping at Object 1A03h: Default ID 0x480 + Node ID

Sub-Index	Value	Object
0	0	Number of mapped application objects in PDO
1	0	Not used by default
2	0	Not used by default
3	0	Not used by default
4	0	Not used by default

Since only TPDO1 has a non-zero value transmission rate (i.e. Event Timer in sub-index 5 of communication object), only these TPDOs will be automatically broadcasted when the unit goes into OPERATIONAL mode.

Object Description

Index	1800h to 1805h
Name	TPDO communication parameter
Object Type	RECORD
Data Type	PDO Communication Record

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	5

Default Value	5

Sub-Index	1h
Description	COB-ID used by TPDO
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	$40000000 \mathrm{~h}+$ TPDOx + Node-ID C0000000 + TPDOy + Node-ID

\boldsymbol{X}	TPDOx ID
1	0180 h
2	0280 h
3	0380 h
4	0480 h

Node-ID = Node-ID of the module. The TPDO COB-IDs are automatically updated if the Node-ID is changed by LSS protocol.
80000000h in the COB-ID indicates that the PDO does not exist (destroyed) 04000000h in the COB-ID indicates that there is no RTR allowed on the PDO

Sub-Index	2 h
Description	Transmission type
Access	RO
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	254 (FEh) $=$ Event Driven

Sub-Index	3h
Description	Inhibit Time
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	0

Sub-Index	4h
Description	Compatibility entry
Access	RW
PDO Mapping	No
Value Range	UNSIGNED8
Default Value	0

Sub-Index	5
Description	Event-timer
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	100 ms (on TPDO1, TPDO2) Oms (on TPDO3, TPDO4)

3.3. Application Objects (DS-404)

Index (hex)	Object	Object Type	Data Type	Access	PDO Mapping
7100	Al Input Field Value	ARRAY	INTEGER16	RO	Yes
6110	Al Sensor Type	ARRAY	UNSIGNED16	RW	No
6112	AI Operating Mode	ARRAY	UNSIGNED8	RW	No
7120	Al Input Scaling 1 FV	ARRAY	INTEGER16	RW	No

7121	AI Input Scaling 1 PV	ARRAY	INTEGER16	RW	No
7122	Al Input Scaling 2 FV	ARRAY	INTEGER16	RW	No
7123	Al Input Scaling 2 PV	ARRAY	INTEGER16	RW	No
7130	Al Input Process Value	ARRAY	INTEGER16	RO	Yes
6132	AI Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
7148	AI Input Span Start	ARRAY	INTEGER16	RW	No
7149	AI Input Span End	ARRAY	INTEGER16	RW	No
$61 A 0$	AI Filter Type	ARRAY	UNSIGNED8	RW	No
61A1	AI Filter Constant	ARRAY	UNSIGNED16	RW	No

3.3.1. Object 7100h: Al Input Field Value

This object represents the measured value of an analog input that has been scaled as per manufacturer object 2102h AI Decimal Digits PV. The base unit for each type of input is defined in Table 5, as well as the readonly resolution (decimal digits) associated with the FV.

Object Description

Index	7100h
Name	Al Input Field Value
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Analog Input X FV
Access	RO
PDO Mapping	Yes
Value Range	Data Type Specific, see Table 11
Default Value	No

3.3.2. Object 6110h: Al Sensor Type

This object defines the type of sensor (input) which is connected to the analog input pin.
Object Description

Index	6110h
Name	Al Sensor Type
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh

Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Sensor Type
Access	RW
PDO Mapping	No
Value Range	See Table 2
Default Value	60 (frequency)

3.3.3. Object 6112h: Al Operating Mode

This object enables special operating modes for the input.
Object Description

Index	6112 h
Name	Al Operating Mode
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Operating Mode
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	1 (normal mode)

3.3.4. Object 7120h: Al Input Scaling 1 FV

This object describes the field value of the first calibration point for the analog input channel, as shown in Figure 5. It also defines the "minimum" value of the analog input range when using this input as a control source for another function block, as described in Table 18 in Section 1.6. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

Index	7120h

Name	Al Input Scaling 1 FV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Scaling 1 FV
Access	RW
PDO Mapping	No
Value Range	See Table 7
Default Value	$1[\mathrm{~Hz}]$

3.3.5. Object 7121h: Al Input Scaling 1 PV

This object defines the process value of the first calibration point for the analog input channel, as shown in Figure 5. It is scaled in the physical unit of the PV, i.e. object 6132 h applies to this object.

Object Description

Index	7121h
Name	Al Input Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	Integer16
Default Value	1 [same as 7120 h]

3.3.6. Object 7122h: Al Input Scaling 2 FV

This object describes the field value of the second calibration point for the analog input channel, as shown in Figure 5. It also defines the "maximum" value of the analog input range when using this input as a control source for another function block, as described in Table 18 in Section 1.6. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

Index	7122h
Name	Al Input Scaling 2 FV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Scaling 2 FV
Access	RW
PDO Mapping	No
Value Range	See Table 7
Default Value	$5000[\mathrm{~Hz}]$

3.3.7. Object 7123h: Al Input Scaling 2 PV

This object defines the process value of the second calibration point for the analog input channel, as shown in Figure 5. It is scaled in the physical unit of the PV, i.e. object 6132 h applies to this object.

Object Description

Index	7123h
Name	Al Input Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Scaling 2 PV
Access	RW
PDO Mapping	No
Value Range	Integer16
Default Value	5000 [same as 7122 h$]$

3.3.8. Object 7130h: Al Input Process Value

This object represents the result of the input scaling applied per Figure 5, and gives the measured quantity scaled in the physical unit of the process value (i.e. ${ }^{\circ} \mathrm{C}, \mathrm{PSI}, \mathrm{RPM}$, etc) with the resolution defined in object 6132h AI Decimal Digits PV.

Object Description

Index	7130h
Name	Al Input Process Value
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Process Value
Access	RO
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

3.3.9. Object 6132h: AI Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the process value object.

Example: A process value of 1.230 (Float) will be coded as 1230 in Integer16 format if the number of decimal digits is set to 3.

Object Description

Index	6123 h
Name	Al Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Alx Decimal Digits PV
Access	RW

PDO Mapping	No
Value Range	0 to 3
Default Value	$0[\mathrm{~Hz}]$

3.3.10.Object 7148h: AI Span Start

This value specifies the lower limit where field values are expected. Field values, which are lower than this limit, are marked as negative overload. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

Index	7148h
Name	AI Span Start
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Span Start (Error Min)
Access	RW
PDO Mapping	No
Value Range	See Table 11
Default Value	$0[\mathrm{~Hz}]$

3.3.11.Object 7149h: AI Span End

This value specifies the upper limit where field values are expected. Field values, which are higher than this limit, are marked as positive overload. It is scaled in the physical unit of the FV, i.e. object 2102h applies to this object.

Object Description

Index	7149h
Name	Al Span End
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Span End (Error Max)
Access	RW
PDO Mapping	No
Value Range	See Table 11
Default Value	$6000[\mathrm{mV}]$

3.3.12.Object 61A0h: Al Filter Type

This object defines the type of data filter that will be applied to the raw input data, as read from the ADC or Timer, before it is passed to the field value object. The types of data filters are defined in Table 4, and how they are used is outlined in Section 1.1.

Object Description

Index	61AOh
Name	Al Filter Type
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1
Description	Al Filter Type
Access	RW
PDO Mapping	No
Value Range	See Table 8
Default Value	0 (no filter)

3.3.13.Object 61A1h: Al Filter Constant

This object defines the number of steps used in the various filters, as defined in Section 1.1.

Object Description

Index	61A0h
Name	Al Filter Constant
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Filter Constant
Access	RW
PDO Mapping	No
Value Range	1 to 1000
Default Value	10

3.4. Manufacturer Objects

$\begin{aligned} & \hline \text { Index } \\ & \text { (hex) } \end{aligned}$	Object	Object Type	Data Type	Access	PDO Mapping
2101	Al Number of Pulses Per Revolution	ARRAY	UNSIGNED16	RW	No
2102	Al Decimal Digits FV	ARRAY	UNSIGNED8	RW	No
2103	Al Debounce Fllter	ARRAY	UNSIGNED8	RW	No
2104	Al Pulse Count to Reset Counter	ARRAY	FLOAT32	RW	No
2105	Al Pulse Count in Time Window	ARRAY	FLOAT32	RW	No
2106	AI Elapsed Time to Reach Pulse Count	ARRAY	FLOAT32	RW	No
2110	AI Error Detect Enable	ARRAY	BOOLEAN	RW	No
2112	Al Error Clear Hysteresis	ARRAY	INTEGER16	RW	No
2112	AI Error Reaction Delay	ARRAY	UNSIGNED16	RW	No
2500	EC Extra Received Process Value	ARRAY	INTEGER16	RW	Yes
2502	EC Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
2520	EC Scaling 1 PV	ARRAY	INTEGER16	RW	No
2522	EC Scaling 2 PV	ARRAY	INTEGER16	RW	No
$3 \mathrm{yz0}$	LTyz Input X-Axis Source	VAR	UNSIGNED8	RW	No
$3 \mathrm{yz1}$	LTyz Input X-Axis Number	VAR	UNSIGNED8	RW	No
$3 \mathrm{yz2}$	LTyz Auto Repeat	VAR	UNSIGNED8	RW	No
$3 y z 3$	LTyz X-Axis Decimal Digits PV	VAR	UNSIGNED8	RW	No
$3 \mathrm{yz4}$	LTyz Y-Axis Decimal Digits PV	VAR	UNSIGNED8	RW	No
$3 \mathrm{yz5}$	LTyz Point Response	ARRAY	UNSIGNED8	RW	No
$3 y z 6$	LTyz Point X-Axis PV	ARRAY	INTEGER32	RW	No
$3 \mathrm{yz7}$	LTyz Point Y-Axis PV	ARRAY	INTEGER16	RW	No
$3 \mathrm{yz8}$	LTyz Output Y-Axis PV	VAR	INTEGER16	RO	Yes
3300	Logic Block Enable	ARRAY	BOOLEAN	RW	No
3310	Logic Block Selected Table	ARRAY	UNSIGNED8	RO	Yes
3320	Logic Output Process Value	ARRAY	INTEGER16	RO	Yes
3×01	LB(3-x) Lookup Table Number	ARRAY	UNSIGNED8	RW	No
3×02	LB(3-x) Function Logical Operator	ARRAY	UNSIGNED8	RW	No
3×11	LB(3-x) Function A Condition 1	RECORD	UNSIGNED8	RW	No
3x12	LB(3-x) Function A Condition 2	RECORD	UNSIGNED8	RW	No
3x13	LB(3-x) Function A Condition 3	RECORD	UNSIGNED8	RW	No
3×21	LB(3-x) Function B Condition 1	RECORD	UNSIGNED8	RW	No

$3 x 22$	LB(3-x) Function B Condition 2	RECORD	UNSIGNED8	RW	No
3×23	LB(3-x) Function B Condition 3	RECORD	UNSIGNED8	RW	No
3×31	LB(3-x) Function C Condition 1	RECORD	UNSIGNED8	RW	No
3×32	LB(3-x) Function C Condition 2	RECORD	UNSIGNED8	RW	No
3×33	LB(3-x) Function C Condition 3	RECORD	UNSIGNED8	RW	No
4500	Math Block Enable	ARRAY	BOOLEAN	RW	No
4521	Math Output Scaling 1 PV	ARRAY	INTEGER16	RW	No
4523	Math Output Scaling 2 PV	ARRAY	INTEGER16	RW	No
4530	Math Output Process Value	ARRAY	INTEGER16	RO	Yes
4532	Math Output Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
$4 y 00$	Math Y Input Source	ARRAY	UNSIGNED8	RW	No
$4 y 01$	Math Y Input Number	ARRAY	UNSIGNED8	RW	No
$4 y 03$	Math Y Input Decimal Digits FV	ARRAY	UNSIGNED8	RW	No
$4 y 20$	Math Y Input Scaling 1 FV	ARRAY	INTEGER16	RW	No
$4 y 22$	Math Y Input Scaling 2 FV	ARRAY	INTEGER16	RW	No
$4 y 40$	Math Y Input Gain	ARRAY	INTEGER8	RW	No
$4 y 50$	Math Y Operator	ARRAY	UNSIGNED8	RW	No
5010	Constant Field Value	ARRAY	FLOAT32	RW	No
5040	Fault Detection Field Value	ARRAY	UNSIGNED16	RO	Yes
5041	Fault Detection Set Threshold	ARRAY	UNSIGNED16	RW	No
5042	Fault Detection Clear Threshold	URSIGNED16	RW	No	
5050	Fault Detection Enable Err Check 8 Faults	ARRAY	UNSIGNED8	RW	No
5041	Fault Detection Error Response Delay	ARRAY	UNSIGNED16	RW	No
55555	Start in Operational Mode	VAR	BOOLEAN	RW	No

Where $\boldsymbol{y z}=01$ to 06 (LUT 1 to 06) and $\boldsymbol{x}=4$ to 5(Logic 1 to 2) and $\boldsymbol{y}=1$ to 4 (Math 1 to 4)

3.4.1. Object 2101h: Al Number of Pulses Per Revolution

This object is only used when a "Frequency" input type has been selected by object 6110 h . The controller will automatically convert frequency measurement from Hz to RPM when a non-zero value is specified. In this case, objects $2111 \mathrm{~h}, 7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}$ and 7149 h will be interpreted as RPM data. Object 2100 h AI Input Range must still be specified in Hertz, and should be selected according to the expected frequencies that the RPM sensor will operate in.

Object Description

Index	2101 h
Name	Al Number of Pulses Per Revolution
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h

Description	Input Pulses per Revolution
Access	RW
PDO Mapping	No
Value Range	0 to 1000
Default Value	0

3.4.2. Object 2102h: Al Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the field value object.

Example: A field value of 1.230 (Float) will be coded as 1230 in Integer16 format if the number of decimal digits is set to 0 .

In addition to the FV object 7100 h , objects $2111 \mathrm{~h}, 7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}$ and 7149 h will also be specified with this resolution. This object is normally read-only, and will be automatically adjusted by the controller as per Table 5 depending on the analog input type and range that has been selected. When object 5550h is set to FALSE (disables automatic updates), this object becomes writeable.

Object Description

Index	2102 h
Name	AI Decimal Digits FV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Input Decimal Digits FV
Access	RW (only when object 5550h is false)
PDO Mapping	No
Value Range	See Table 5
Default Value	$0[1 \mathrm{~Hz}]$

3.4.3. Object 2103h: Al Debounce Filter

This object will debounce the input signal applied on a single digital input as shown in Figure 4. The options for this object are listed in Table 2.

Object Description

Index	2103h

Name	Al Debounce Filter
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Input Debounce Filter
Access	RW
PDO Mapping	No
Value Range	See Table 3
Default Value	2 [Filter 1.78 us]

3.4.4. Object 2104h: Al Pulse Count to Reset Counter

This object is only used when a "Counter (Pulse Count Reset)" input type has been selected by object 6110 h . When, input pulse count reaches value selected by object 2104 h , the counter will reset back to 0 .

Object Description

Index	2104 h
Name	Pulse Count to Reset Counter
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Pulse Count to Reset Counter
Access	RW
PDO Mapping	No
Value Range	0 to 1000000
Default Value	1000

3.4.5. Object 2105h: Al Pulse Count in Time Window

This object is only used when a "Counter (Time Window)" input type has been selected by object 6110h. Object 2105 h selects the time window (in milliseconds) within the amount of pulses is measured.

Object Description

Index	2105 h
Name	Pulse Count in Time Window
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Pulse Count in Time Window
Access	RW
PDO Mapping	No
Value Range	0 to 8.64 e 7
Default Value	500

3.4.6. Object 2106h: Al Elapsed Time to Reach Pulse Count

This object is only used when a "Counter (Pulse Window)" input type has been selected by object 6110h. Object 2106h defines the amount of input pulses (in number of pulses) to be received.

Object Description

Index	2106 h
Name	Elapsed Time to Reach Pulse Count
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Elapsed Time to Reach Pulse Count
Access	RW
PDO Mapping	No
Value Range	0 to 1000000
Default Value	1000

3.4.7. Object 2110h: AI Error Detect Enable

This object enables error detection and reaction associated with the analog input function block. When disabled, the input will not generate an EMCY code in object 1003h Pre-Defined Error Field, nor will it disable any output controlled by the input should the input go out of range as defined by the objects 7148h AI Span Start and 7149h AI Span End.

Object Description

Index	2110 h
Name	Al Error Detect Enable
Object Type	ARRAY
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Input Error Detect Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

3.4.8. Object 2111h: Al Error Clear Hysteresis

This object is used to prevent rapid activation/clearing of an input fault flag, and sending of object 1003h to the CANopen® network. Once the input has gone above/below the thresholds that define the valid operating range, it must come back into range minus/plus this value to clear the fault. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

Index	2111 h
Name	Al Error Clear Hysteresis
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1

Default Value	1

Sub-Index	1h
Description	Input Error Clear Hysteresis
Access	RW
PDO Mapping	No
Value Range	See Table 11
Default Value	$50[\mathrm{~Hz}]$

3.4.9. Object 2112h: Al Error Reaction Delay

This object is used to filter out spurious signals and to prevent saturating the CANopen $®$ network with broadcasts of object 1003h as the fault is set/cleared. Before the fault is recognized (i.e. the EMCY code is added to the pre-defined error field list), it must remain active throughout the period of time defined in this object. The physical unit for this object is milliseconds.

Object Description

Index	2112 h
Name	Al Error Reaction Delay
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-Index	1h
Description	Al Error Reaction Delay
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$1000[\mathrm{~ms}]$

3.4.10.Object 2500h: EC Extra Received Process Value

This object provides an extra control source in order to allow other function blocks to be controlled by data received from a CANopen® RPDO. It functions similarly to any other writeable, mappable PV object.

Object Description

Index	2500 h
Name	EC Extra Received Process Value
Object Type	ARRAY

Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	14
Default Value	14

Sub-Index	1h to 14h $(x=1$ to 14)
Description	ECx Received Process Value
Access	RW
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

3.4.11.Object 2502h: EC Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the extra control data, which is interpreted with data type Integer16 in the process value object.
Object Description

Index	2502 h
Name	EC Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	15
Default Value	15

Sub-Index	1h to $15 \mathrm{~h}(\mathrm{x}=1$ to 15$)$
Description	ECx Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to 3
Default Value	$2(0.01$ resolution)

3.4.12.Object 2520h: EC Scaling 1 PV

This object defines the minimum value of the extra control source. It used as the Scaling 1 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 5.

There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502h, EC Decimal Digits PV. This object must always be smaller than object 2522 h EC Scaling 2 PV.

Object Description

Index	2520 h
Name	EC Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	15
Default Value	15

Sub-Index	1h to 15h $(x=1$ to 15)
Description	ECx Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 2522h sub-index X
Default Value	0

3.4.13.Object 2522h: EC Scaling 2 PV

This object defines the maximum value of the extra control source. It used as the Scaling 2 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 5. There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502 h , EC Decimal Digits PV. This object must always be larger than object 2520 h EC Scaling 1 PV.

Object Description

Index	2522h
Name	EC Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	15
Default Value	15

Sub-Index	1h to $15 \mathrm{~h}(\mathrm{x}=1$ to 15)
Description	ECx Scaling 2 PV
Access	RW

PDO Mapping	No
Value Range	2520h sub-index X to 32767
Default Value	$1000(10.00)$

3.4.14.Object 3yzOh: LTyz Input X-Axis Source

This object defines the type of input that will be used to determine the X-Axis input process value for the lookup table function. The available control sources on the CAN-IN-CO controller are listed in Table 16. Not all sources would make sense to use as an X-Axis input, and it is the user's responsibility to select a source that makes sense for the application. A selection of "Control Source Not Used" disables the associated lookup table function block.

Object Description

Index	3yzOh (where yz = 01 to 06)
Name	LTyz Input X-Axis Source
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	See Table 16
Default Value	0 (control not used)

3.4.15.Object 3yz1h: LTyz Input X-Axis Number

This object defines the number of the source that will be used as the X-Axis input PV for the lookup table function. The available control numbers are dependent on the source selected, as shown in Table 17. Once selected, the limits for the points on the X-Axis will be constrained by the scaling objects of the control source/number as defined in Table 18.

Object Description

Index	3yz1h (where yz = 01 to 06)
Name	LTyz Input X-Axis Number
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	See Table 17
Default Value	0 (null control source)

3.4.16.Object 3yz3h: LTyz X-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the X-Axis input data and the points in the lookup table. It should be set equal to the decimal digits used by the PV from the control source/number as defined in Table 18.

Object Description

Index	3yz3h (where yz = 01 to 06)
Name	LTyz X-Axis Decimal Digits PV
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 4 (see Table 17)
Default Value	0

3.4.17.Object 3yz4h: LTyz Y-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the Y -Axis points in the lookup table. When the Y-Axis output is going to be the input to another function block (i.e. an analog output), it is recommended that this value be set equal to the decimal digits used by the block that is using the lookup table as the control source/number.

Object Description

Index	3yz4h (where $y z=01$ to 06)
Name	LTyz Y-Axis Decimal Digits PV
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	0

3.4.18.Object 3yz5h: LTyz Point Response

This object determines the Y-Axis output response to changes in the X -Axis input. The value set in sub-index 1 determines the X -Axis type (i.e. data or time), while all other sub-indexes determine the response (ramp, step, ignore) between two points on the curve. The options for this object are listed in Table 8. See Figure 7 for an example of the difference between a step and ramp response.

Object Description

Index	3yz5h (where yz = 01 to 6)
Name	LTyz Point Response
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11

Sub-Index	1h
Description	X-Axis Type
Access	RW
PDO Mapping	No
Value Range	See Table 23 (0 or 1$)$
Default Value	0 (x-axis data response)

Sub-Index	2h to Bh $(x=2$ to 11)
Description	LTyz Point X Response
Access	RW
PDO Mapping	No
Value Range	See Table 23 (0,1 or 2$)$
Default Value	1 (ramp to response)

3.4.19.Object 3yz6h: LTyz Point X-Axis PV

This object defines the X-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes.

When a data response is selected for the X-Axis type (sub-index 1 of object 3yz5), this object is constrained such that X1 cannot be less than the Scaling 1 value of the selected control source/number, and X11 cannot be more than the Scaling 2 value. The rest of the points are constrained by the formula below. The physical unit associate with the data will be that of the selected input, and it will use the resolution defined in object 3yz3h, LTz X-Axis Decimal Digits PV.

$$
\text { MinInt16 }<=X_{1}<=X_{2}<=X_{3}<=X_{4}<=X_{5}<=X_{6}<=X_{7}<=X_{8}<=X_{9}<=X_{10}<=X_{11}<=\text { Maxint16 }
$$

When a time response has been selected, each point on the X -Axis can be set anywhere from 1 to $86,400,000 \mathrm{~ms}$.

Object Description

Index	3yz6h (where yz = 01 to 6)
Name	LTyz Point X-Axis PV
Object Type	ARRAY
Data Type	INTEGER32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11

Sub-Index	1h to Bh (x = 1 to 11)	
Description	LTyz Point X-Axis PVx	
Access	RW	
PDO Mapping	No	
Value Range	See above (data)	1 to 86400000 (time)
Default Value	$10^{*}(x-1)$	No

3.4.20.Object 3yz7h: LTyz Point Y-Axis PV

This object defines the Y-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes. The data is unconstrained and has no physical unit associate with it. It will use the resolution defined in object 3yz4h, LTyz Y-Axis Decimal Digits PV.
Object Description

Index	3yz7h (where yz =01 to 6)
Name	LTz Point Y-Axis PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11

Sub-Index	1h to Bh $(x=1$ to 11)
Description	LTyz Point Y-Axis PVx
Access	RW
PDO Mapping	No
Value Range	Integer16
Default Value	$10^{*}(x-1)$ [i.e. $\left.0,10,20,30, \ldots 100\right]$

3.4.21.Object 3yz8h: LTyz Output Y-Axis PV

This read-only object contains the lookup table function block PV that can be used as the input source for another function block (i.e. analog output.) The physical unit for this object is undefined, and it will use the resolution defined in object 3yz4h, LTz Y-Axis Decimal Digits PV.

Object Description

Index	3yz8h (where yz = 01 to 06)
Name	LTyz Output Y-Axis PV
Object Type	VARIABLE
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Access	RO
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

3.4.22.Object 3300h: Logic Block Enable

This object defines whether or not the logic shown in Figure 10 will be evaluated.
Object Description

Index	3300h
Name	Logic Block Enable
Object Type	ARRAY
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2

Sub-Index	1 h to $2 \mathrm{~h}(\mathrm{x}=1$ to 2$)$
Description	LBx Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

3.4.23.Object 3310h: Logic Block Selected Table

This read-only object reflects what table has been selected as the output source for the logic block after the evaluation shown in Figure 10 has been performed.

Object Description

Index	3310h
Name	Logic Block Selected Table
Object Type	ARRAY

Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2

Sub-Index	1h to $2 \mathrm{~h}(\mathrm{x}=1$ to 2$)$
Description	LBx Selected Table
Access	RO
PDO Mapping	Yes
Value Range	1 to 6
Default Value	No

3.4.24.Object 3320h: Logic Block Output PV

This read-only object reflects the output from the selected table, interpreted as a percentage. The limits for the percentage conversion are based on the range of the lookup tables Y-Axis Output PV as shown in Table 13. This value has a fixed decimal digit value of 1 giving a resolution of 0.1%.

Object Description

Index	3320 h
Name	Logic Block Output PV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2

Sub-Index	1h to 2h $(x=1$ to 2$)$
Description	LBx Output PV
Access	RO
PDO Mapping	Yes

3.4.25.Object 3x01h: LB(3-x) Lookup Table Numbers

This object determines which of the six lookup tables supports on the MAG-IN-CO are associated with a particular function within the given logic block. Up to three tables can be linked to each logic function.

Object Description

Index	$3 \times 01 \mathrm{~h}$ (where $\mathrm{x}=4$ to 5)
Name	LB(3-x) Lookup Table Numbers
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to $4 \mathrm{~h}(\mathrm{y}=\mathrm{A}$ to C$)$
Description	LB(3-x) Lookup Table Y Number
Access	RW
PDO Mapping	No
Value Range	1 to 6
Default Value	See Table 18

3.4.26.Object 3x02h: LB(3-x) Function Logical Operator

This object determines how the results of the three conditions for each function are to be compared to one another to determine the overall state of the function output. There are up to three functions that can be evaluated in each logic block. The options for this object are defined in Table 12. See Section 1.3 for more information about how this object is used.

Object Description

Index	$3 x 02 \mathrm{~h}$ (where $\mathrm{x}=4$ to 5)
Name	LB(3-x) Function Logical Operator
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to $4 \mathrm{~h}(\mathrm{y}=\mathrm{A}$ to C$)$
Description	LB(3-x) Function Y Logical Operator
Access	RW
PDO Mapping	No
Value Range	See Table 12
Default Value	Function $\mathrm{A}=1$ (and all) Function $\mathrm{B}=1$ (and all) Function $\mathrm{C}=0$ (default)

3.4.27.Object 3x11h: LB(3-x) Function A Condition 1

3.4.28.Object 3x12h: LB(3-x) Function A Condition 2
3.4.29.Object 3x13h: LB(3-x) Function A Condition 3
3.4.30.Object 3×21 h: LB(3-x) Function B Condition 1
3.4.31.Object $3 x 22 h$: LB(3-x) Function B Condition 2
3.4.32.Object 3x23h: LB(3-x) Function B Condition 3
3.4.33.Object 3×31 h: LB(3-x) Function C Condition 1
3.4.34.Object $3 \times 32 h$: LB(3-x) Function C Condition 2
3.4.35.Object 3x33h: LB(3-x) Function C Condition 3

These objects, $3 x y z h$, represent Logic Block x, Function y, Condition z, where $x=4$ to $5, y=1$ (A) to 3 (C), and $z=1$ to 3. All of these objects are a special type of record, defined in Table 9. Information on how to use these objects is defined in Section 1.3.

Object Description

Index	$3 x y z h$
Name	LB(3-x) Function y Condition z
Object Type	RECORD
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5

Sub-Index	1h
Description	Argument 1 Source
Access	RW
PDO Mapping	No
Value Range	See Table 15
Default Value	1 (CANopen® Message)

Sub-Index	2 h
Description	Argument 1 Number
Access	RW
PDO Mapping	No
Value Range	See Table 17
Default Value	1 (EC Received PV 1)

Sub-Index	3h
Description	Argument 2 Source
Access	RW
PDO Mapping	No

Value Range	See Table 16
Default Value	6 (Constant PV)

Sub-Index	4h
Description	Argument 2 Number
Access	RW
PDO Mapping	No
Value Range	See Table 17
Default Value	3 (Constant FV 3)

Sub-Index	5 h
Description	Operator
Access	RW
PDO Mapping	No
Value Range	See Table 16
Default Value	0 (Equals)

3.4.36.Object 4000h: Math Function Enable

The corresponding sub-index of object must be set TRUE in order for a math function block to be enabled. Otherwise, the output will always be at 0 .

Object Description

Index	4000h
Name	Math Function Enable
Object Type	ARRAY
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (Y = 1 to 4)
Description	Math Y Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

3.4.37.Object 4021h: Math Output Scaling 1 PV

This object defines the process value that would correspond to 0% output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

Object Description

Index	4021 h
Name	Math Output Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (Y = 1 to 4)
Description	Math Y Output Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 32767
Default Value	0

3.4.38.Object 4023h: Math Output Scaling 2 PV

This object defines the process value that would correspond to 100% output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

Object Description

Index	4023h
Name	Math Output Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (Y = 1 to 4)
Description	Math Y Output Scaling 2 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 32767
Default Value	$10000(100.00)$

3.4.39.Object 4030h: Math Output Process Value

This read-only object reflects the output from the math function block after it has been scaled by objects 4021 h and 4023h. The object would apply the resolution defined in object 4032h Math Output Decimal Digits PV. The physical unit is undefined.

Object Description

Index	4030h
Name	Math Output Process Value
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (Y = 1 to 4)
Description	Math Y Output Process Value
Access	RO
PDO Mapping	Yes
Value Range	-32768 to 32767
Default Value	No

3.4.40.Object 4032h: Math Output Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the output data, which is interpreted with data type Integer16 in the process value object.

Object Description

Index	4032h
Name	Math Output Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (Y=1 to 4)
Description	Math Y Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$2(0.01)$

3.4.41.Object 4y00h: Math Y Input Source

This object defines the input sources that will be used in the mathematical calculations. Here, $\mathrm{y}=1$ to $4-$ representing Math Block 1 to Math Block 4. If a control source is not used, the associate mathematical calculation would be ignored. The available control sources on the MAG-IN-CO controller are listed in Table 15.

Object Description

Index	$4 y 00 h(y=1$ to 4$)$
Name	Math Y Input Source
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (X=1 to 4)
Description	Math Y Input X Source
Access	RW
PDO Mapping	No
Value Range	See Table 16
Default Value	0 (control source not used)

3.4.42.Object 4y01h: Math Y Input Number

This object defines the number of the input source that will be used in the math calculation. The available control numbers are dependent on the source selected, as shown in Table 17. Once selected, the input value will be used in the corresponding calculation as described in Section 1.4.

Object Description

Index	4y01h $(\mathrm{y}=1$ to 4)
Name	Math Y Input Number

Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (X = 1 to 4)
Description	Math Y Input X Number
Access	RW
PDO Mapping	No
Value Range	See Table 17
Default Value	0 (null input)

3.4.43.Object 4y03h: Math Y Input Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the field value object.

Object Description

Index	$4 y 03 \mathrm{~h}(\mathrm{y}=1$ to 4$)$
Name	Math Y Input Decimal Digits FV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h (X=1 to 4)
Description	Math Y Input X Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to4
Default Value	$2(0.01)$

3.4.44.Object 4y20h: Math Y Input Scaling 1 FV

This object defines the input field value that would correspond to 0% when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object 4y03h Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

Object Description

Index	4y20h (y = 1 to 4)
Name	Math Y Input Scaling 1 FV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h $(\mathrm{X}=1$ to 4)
Description	Math Y Input X Scaling 1 FV
Access	RW
PDO Mapping	No
Value Range	INTEGER16
Default Value	0

3.4.45.Object 4y22h: Math Y Input Scaling 2 FV

This object defines the input field value that would correspond to 100% when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object 4y03h Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

Object Description

Index	4y22h (y = 1 to 4)
Name	Math Y Input Scaling 2 FV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h $(X=1$ to 4)
Description	Math Y Input X Scaling 2 FV
Access	RW

PDO Mapping	No
Value Range	INTEGER16
Default Value	$10000(100.00 \%)$

3.4.46.Object 4y40h: Math Y Input Gain

This object can be used to adjust the 'weight' of the input in the math calculation. It is a multiplier of the input after it has been converted into a percentage, before it is used in the math calculation. This object has a fixed resolution of 2 decimal digits.

Object Description

Index	4y40h (y = 1 to 4)
Name	Math Y Input Gain
Object Type	ARRAY
Data Type	INTEGER8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4

Sub-Index	1h to 4h $(\mathrm{X}=1$ to 4)
Description	Math Y Input X Gain
Access	RW
PDO Mapping	No
Value Range	-100 to 100
Default Value	$100(1.0)$

3.4.47.Object 4y50h: Math Y Operator

This object defines the actual operators that will be used in each stage of a math calculation, as described in Section 1.4. The options for this object are listed in Table 30.

Object Description

Index	4y50h (y=1 to 4)
Name	Math Y Operator
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO

PDO Mapping	No
Value Range	3
Default Value	3

Sub-Index	1h to 3h (X=1 to 3)
Description	Math Y Function X Operator
Access	RW
PDO Mapping	No
Value Range	See Table 15
Default Value	9 (Plus)

3.4.48.Object 5010h: Constant Field Value

This object is provided to allow the user to compare against a fixed value, i.e. for setpoint control in a PID loop, or in a conditional evaluation for a logic block. The first two values in this object are fixed at FALSE (0) and TRUE (1). There are ten other sub-indexes provide for other unconstrained data.

Object Description

Index	5010 h
Name	Constant Field Value
Object Type	ARRAY
Data Type	FLOAT32

Entry Description

Sub-Index	0
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	12
Default Value	12

Sub-Index	1
Description	Constant False
Access	RO
PDO Mapping	No
Value Range	0
Default Value	0 (false)

Sub-Index	2
Description	Constant True
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1 (true)

Sub-Index	3
Description	Constant FV 3
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	10.00

Sub-Index	4
Description	Constant FV 4
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	20.00

Sub-Index	5
Description	Constant FV 5
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	30.00

Sub-Index	6
Description	Constant FV 6
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	40.00

Sub-Index	7
Description	Constant FV 7
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	50.00

Sub-Index	8
Description	Constant FV 8
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	60.00

Sub-Index	9
Description	Constant FV 9
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	70.00

Sub-Index	10
Description	Constant FV 10
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	80.00

Sub-Index	11
Description	Constant FV 11
Access	RW
PDO Mapping	No
Value Range	Float32

Default Value	90.00
Sub-Index	12
Description	Constant FV 12
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	100.00

3.4.49.Object 5040h: Fault Detection Field Value

This read-only object is available for diagnostic feedback purposes. It reflects the measured over/under voltage powering the controller as well as the internal microcontroller temperature. The physical unit for this object is volts and ${ }^{\circ} \mathrm{C}$, respectively.

Object Description

Index	5040 h
Name	Power Supply Field Value
Object Type	VARIABLE
Data Type	FLOAT32

Entry Description

Sub-Index	Oh
Access	RO
PDO Mapping	Yes
Value Range	3
Default Value	3

Sub-Index	1h
Description	Over Temperature Field Value
Access	RO
PDO Mapping	Yes
Value Range	0 to $1250\left[{ }^{\circ} \mathrm{C} \times 10\right]$
Default Value	0

Sub-Index	2h
Description	Over Voltage Field Value
Access	RO
PDO Mapping	Yes
Value Range	0 to $500[\mathrm{~V} \times 10]$
Default Value	0

Sub-Index	3h
Description	Under Voltage Field Value
Access	RO
PDO Mapping	Yes
Value Range	0 to $500[\mathrm{~V} \times 10]$
Default Value	0

3.4.50.Object 5041h: FD Set Threshold

This object sets the value that will flag a fault detection error in the MAG-IN-CO if the measured field value (5040h) goes above (FD 1 and FD 2) or below (FD 3) this limit. If error checking on the fault is enabled by object 5050 h, then the module will flag an appropriate error on that channel. This value must be in the same units as the field value for the fault, as determined by the sub-index.

Object Description

Index	5041 h
Name	FD Set Threshold
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Subindex	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	3
Default Value	3

Sub-index	1h
Description	Over Temperature Set Threshold
Access	RW
PDO Mapping	No
Value Range	5042 h at sub-index 1 to $1250\left[{ }^{\circ} \mathrm{C} \times 10\right]$
Default Value	$1100\left(110.0^{\circ} \mathrm{C}\right)$

Sub-index	2 h
Description	Over Voltage Set Threshold
Access	RW
PDO Mapping	No
Value Range	5042 h at sub-index 2 to $1000[\mathrm{~V} \mathrm{x} \mathrm{10]}$
Default Value	$500(50.0 \mathrm{~V})$

Sub-index	3h
Description	Under Voltage Set Threshold
Access	RW
PDO Mapping	No
Value Range	80 to 5042 h at sub-index $3[\mathrm{~V} \times 10]$
Default Value	$90(9.0 \mathrm{~V})$

3.4.51.Object 5042h: FD Clear Threshold

This object sets the value that will clear a fault detection error in the MAG-IN-CO if the measured field value (5040 h) goes below (FD 1 and FD 2) or above (FD 3) this threshold. This value must be in the same units as the field value for the fault, as determined by the sub-index.

Object Description

Index	5042 h
Name	FD Clear Threshold
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Subindex	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	3
Default Value	3

Subindex	1 h
Description	Over Temperature Clear Threshold
Access	RW
PDO Mapping	No
Value Range	500 to 4001 h at subindex $1\left[{ }^{\circ} \mathrm{C} \times 10\right]$
Default Value	$850\left(85.0^{\circ} \mathrm{C}\right)$

Subindex	2 h
Description	Over Voltage Clear Threshold
Access	RW
PDO Mapping	No
Value Range	4002 h at subindex 3 to 4001 h at subindex 2 [V x 10]
Default Value	$480(48.0 \mathrm{~V})$

Subindex	3 h
Description	Under Voltage Clear Threshold
Access	RW
PDO Mapping	No
Value Range	4001 h at subindex 3 to 4002 h at subindex $2[\mathrm{~V} \times 10]$
Default Value	$120(12.0 \mathrm{~V})$

3.4.52.Object 5050h: FD Enable Error Check 3 Faults

This object enables or disables the fault detection error-checking feature for each fault detectable by the MAG-IN-CO. The bitmap for this object at sub-index 1 is:

- Bit 0: Over Temperature Detection
- Bit 1: Over Voltage Detection
- Bit 2: Under Voltage Detection

Object Description

Index	5050h
Name	FD Enable Error Checking 3 Faults
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1

Sub-index	1h
Description	Error Check for FD 1 to FD 3
Access	RW
PDO Mapping	No
Value Range	Bit Value 0 = Error Check Disabled Bit Value 1 = Error Check Enabled
Default Value	00h (all error check disabled)

3.4.53.Object 5051h: FD Error Response Delay

This object is used to prevent intermittent faults from overloading the bus with error messages. The value is defined as a multiple of 1 ms . If a fault has been present during the entirety of the delay time, the MAG-IN-CO Controller will flag an error of the detected fault once the timer has expired. The object can be set to zero, in which case a fault will immediately trigger an error response.

Object Description

Index	5051 h
Name	FD Error Response Delay
Object Type	ARRAY
Data Type	UNSIGNED16

Entry Description

Subindex	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	3
Default Value	3

Subindex	1h to 3h
Description	Error Delay, FD 1 to FD 3
Access	RW
PDO Mapping	No
Value Range	0 to $10000[\mathrm{~ms}]$
Default Value	$5000[\mathrm{~ms}]$

3.4.54.Object 5550h: Enable Automatic Updates

This object allows the controller to update objects to defaults automatically when an input type is changed. Be default this object is TRUE.

Object Description

Index	5550 h
Name	Enable Auto Updates
Object Type	VARIABLE
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	1 [TRUE]

3.4.55.Object 5555h: Start in Operational Mode

This object allows the unit to start in Operational mode without requiring the presence of a CANopen® Master on the network. It is intended to be used only when running the MAG-IN-CO controller as a stand-alone module. This should always be set FALSE whenever it is connected to a standard master/slave network.

Object Description

Index	5555 h
Name	Start in Operational Mode
Object Type	VARIABLE
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

APPENDIX A - TECHNICAL SPECIFICATION

Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.

Power

Power Supply Input - Nominal	$12 \mathrm{~V}, 24 \mathrm{Vdc}$ or 48 Vdc nominal; $8 \ldots 60 \mathrm{Vdc}$ The minimum allowable supply voltage for the power pin is 7 Vdc.
Surge Protection	Meets the surge requirements of DIN EN13309
Reverse Polarity Protection	Provided

Input

Input	1 Magnetic Pick-up type input Frequency Range: 0.5 Hz to 20 kHz Amplitude: 100 mVAC to 100 VAC (RMS)

General Specifications

OUR PRODUCTS

AC/DC Power Supplies

Actuator Controls/Interfaces

Automotive Ethernet Interfaces

Battery Chargers
CAN Controls, Routers, Repeaters
CAN/WiFi, CAN/Bluetooth, Routers
Current/Voltage/PWM Converters
DC/DC Power Converters
Engine Temperature Scanners
Ethernet/CAN Converters, Gateways, Switches

Fan Drive Controllers
Gateways, CAN/Modbus, RS-232
Gyroscopes, Inclinometers
Hydraulic Valve Controllers
Inclinometers, Triaxial

I/O Controls

LVDT Signal Converters

Machine Controls

Modbus, RS-422, RS-485 Controls
Motor Controls, Inverters
Power Supplies, DC/DC, AC/DC
PWM Signal Converters/Isolators
Resolver Signal Conditioners
Service Tools
Signal Conditioners, Converters
Strain Gauge CAN Controls
Surge Suppressors

OUR COMPANY

Axiomatic provides electronic machine control components to the off-highway, commercial vehicle, electric vehicle, power generator set, material handling, renewable energy and industrial OEM markets. We innovate with engineered and off-the-shelf machine controls that add value for our customers.

QUALITY DESIGN AND MANUFACTURING

We have an ISO9001:2015 registered design/manufacturing facility in Canada.

WARRANTY, APPLICATION APPROVALS/LIMITATIONS

Axiomatic Technologies Corporation reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process at https://www.axiomatic.com/service/.

COMPLIANCE

Product compliance details can be found in the product literature and/or on axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.

SAFE USE

All products should be serviced by Axiomatic. Do not open the product and perform the service yourself.

This product can expose you to chemicals which are known in the State of California, USA to cause cancer and reproductive harm. For more information go to www.P65Warnings.ca.gov.

SERVICE

All products to be returned to Axiomatic require a Return Materials Authorization Number (RMA\#) from sales@axiomatic.com. Please provide the following information when requesting an RMA number:

- Serial number, part number
- Runtime hours, description of problem
- Wiring set up diagram, application and other comments as needed

DISPOSAL

Axiomatic products are electronic waste. Please follow your local environmental waste and recycling laws, regulations and policies for safe disposal or recycling of electronic waste.

CONTACTS

```
Axiomatic Technologies Corporation
1445 Courtneypark Drive E.
Mississauga, ON
CANADA L5T 2E3
TEL: +19056029270
FAX: +19056029279
www.axiomatic.com
sales@axiomatic.com
```


Axiomatic Technologies $\mathbf{O y}$

Höytämöntie 6
33880 Lempäälä
FINLAND
TEL: +358 103375750
www.axiomatic.com
salesfinland@axiomatic.com

