# 18 DIGITAL INPUT CONTROLLER With CANopen® 

## USER MANUAL

P/N: AX030311

Axiomatic Technologies Oy Höytämöntie 6
33880 LEMPÄÄLÄ, Finland
Tel. +358 103375750
salesfinland@axiomatic.com www.axiomatic.fi

## ACRONYMS

| CAN | Controller Area Network |
| :--- | :--- |
| CANopen |  |
| CAN-ID | CANopen® <br> CAN 11-bit Identifistered community trademark of CAN in Automation e.V. |
| CMD | Command |
| COB | Communication Object |
| EDS | Electronic Data Sheet |
| EMCY | Emergency |
| LSB | Least Significant Byte (or Bit) |
| LSS | Layer Settling Service |
| MSB | Most Significant Byte (or Bit) |
| MEMS | Micro-electromechanical system |
| NMT | Network Management |
| RO | Read Only Object |
| RPDO | Received Process Data Object |
| RW | Read/Write Object |
| SDO | Service Data Object |
| TPDO | Transmitted Process Data Object |
| TRGT | Target |
| VOUT | Voltage Output, 0-5V |
| WO | Write Only Object |

## REFERENCES

[DS-301] CiA DS-301 V4.1 - CANopen ${ }^{\circledR}$ Application Layer and Communication Profile. CAN in Automation 2005
[DS-305] CiA DS-305 V2.0 - Layer Setting Service (LSS) and Protocols. CAN in Automation 2006
[DS-404] CiA DS-404 V1.2 - Device profile for measurement devices and closed-loop controllers

These documents are available from the CAN in Automation e.V. website http://www.can-cia.org/.

## TABLE OF CONTENTS

1. OVERVIEW OF CONTROLLER ..... 5
1.1. Description of 18 Digital Inputs Controller ..... 5
1.2. Dimensions and Pinout ..... 6
2. USING 18 Digital Inputs THROUGH CANopen ${ }^{\circledR}$ ..... 7
2.1. Node ID and Baudrate ..... 7
2.2. Digital Input Function Block ..... 7
2.3. Analog Input Function Block ..... 9
2.4. Internal Function Block Control Sources ..... 14
2.5. Lookup Table Function Block ..... 17
2.5.1. X-Axis, Input Data Response ..... 17
2.5.2. Y-Axis, Lookup Table Output ..... 18
2.5.3. Point To Point Response ..... 18
2.5.4. X-Axis, Time Response ..... 20
2.6. Programmable Logic Function Block ..... 21
2.6.1. Conditions Evaluation ..... 24
2.6.2. Table Selection ..... 25
2.6.3. Logic Block Output ..... 26
2.7. Math Function Block ..... 27
2.8. Fault Detection ..... 29
3. OBJECT DICTIONARY ..... 30
3.1. COMMUNICATION OBJECTS ..... 30
3.1.1. PDO Parameters ..... 31
3.1.2. Object 1000h: Device Type ..... 33
3.1.3. Object 1001h: Error Register ..... 33
3.1.4. Object 1003h: Pre-Defined Error Field ..... 33
3.1.5. Object 1010h: Store Parameters ..... 34
3.1.6. Object 1011h: Restore Default Parameters ..... 35
3.1.7. Object 1016h: Consumer Heartbeat Time ..... 37
3.1.8. Object 1017h: Producer Heartbeat Time ..... 37
3.1.9. Object 1018h: Identity Object ..... 38
3.1.10. Object 1029h: Error Behaviour ..... 39
3.2. APPLICATION OBJECTS (DS-404) ..... 41
3.2.1. Object 6000h: DI Read State 8 Input Lines ..... 42
3.2.2. Object 6002h: DI Polarity 8 Input Lines ..... 42
3.2.3. Object 7100h: DI Input Field Value ..... 43
User Manual UMAX030311. Version: 1.1 ..... iii
3.2.4. Object 6110h: DI Sensor Type ..... 44
3.2.5. Object 6112h: DI Operating Mode ..... 44
3.2.6. Object 7120h: DI Input Scaling 1 FV ..... 45
3.2.7. Object 7121h: DI Input Scaling 1 PV ..... 45
3.2.8. Object 7122 h: DI Input Scaling 2 FV ..... 46
3.2.9. Object 7123h: DI Input Scaling 2 PV ..... 47
3.2.10. Object 7130h: DI Input Process Value ..... 47
3.2.11. Object 6132h: DI Decimal Digits PV ..... 48
3.2.12. Object 7148h: DI Span Start ..... 48
3.2.13. Object 7149h: DI Span End. ..... 49
3.2.14. Object 7124: DI Input Offset ..... 49
3.2.15. Object 6125: DI Autozero ..... 50
3.2.16. Object 61AOh: DI Filter Type ..... 51
3.2.17. Object 61A1h: DI Filter Constant. ..... 51
3.3. MANUFACTURER OBJECTS ..... 52
3.3.1. Object 2020h: DI Pullup/Down Mode 1 Input Line ..... 53
3.3.2. Object 2030h: DI Debounce Filter 1 Input Line ..... 54
3.3.3. Object 2100h: DI Input Range ..... 54
3.3.4. Object 2101h: DI Number of Pulses Per Revolution. ..... 55
3.3.5. Object 2102h: DI Decimal Digits FV ..... 56
3.3.6. Object 2110h: DI Error Detect Enable ..... 56
3.3.7. Object 2111h: DI Error Clear Hysteresis ..... 57
3.3.8. Object 2112h: DI Error Reaction Delay ..... 58
3.3.9. Object 2120h: DI Third-Order Filter Power ..... 58
3.3.10. Object 2121h: DI Third-Order Filter Input Coefficient NO ..... 59
3.3.11. Object 2122h: DI Third-Order Filter Input Coefficient N1 ..... 59
3.3.12. Object 2123h: DI Third-Order Filter Input Coefficient N2 ..... 59
3.3.13. Object 2124h: DI Third-Order Filter Input Coefficient N3 ..... 59
3.3.14. Object 2125h: DI Third-Order Filter Output Coefficient N1. ..... 59
3.3.15. Object 2126h: DI Third-Order Filter Output Coefficient N2 ..... 59
3.3.16. Object 2127h: DI Third-Order Filter Output Coefficient N3 ..... 59
3.3.18. Object 2502h: EC Decimal Digits PV ..... 61
3.3.19. Object 2520h: EC Scaling 1 PV ..... 61
3.3.20. Object 2522h: EC Scaling 2 PV ..... 62
3.3.21. Object 3yzOh: LTyz Input X-Axis Source ..... 62
3.3.22. Object 3yz1h: LTyz Input X-Axis Number ..... 63
3.3.23. Object 3yz2h: LTyz Auto Repeat ..... 63
3.3.24. Object 3yz3h: LTyz X-Axis Decimal Digits PV ..... 64
3.3.25. Object 3yz4h: LTyz Y-Axis Decimal Digits PV ..... 64
3.3.26. Object 3yz5h: LTyz Point Response ..... 64
3.3.27. Object 3yz6h: LTyz Point X-Axis PV ..... 65
3.3.28. Object 3yz7h: LTyz Point Y-Axis PV ..... 66
3.3.29. Object 3yz8h: LTyz Output Y-Axis PV ..... 67
3.3.30. Object 3300h: Logic Block Enable ..... 67
3.3.31. Object 3310h: Logic Block Selected Table ..... 67
3.3.32. Object 3320h: Logic Block Output PV ..... 68
3.3.33. Object $3 x 01$ h: LB(3-x) Lookup Table Numbers ..... 69
3.3.34. Object 3x02h: LB(3-x) Function Logical Operator ..... 69
3.3.44. Object 4000h: Math Function Enable ..... 71
3.3.45. Object 4021h: Math Output Scaling 1 PV ..... 72
3.3.46. Object 4023h: Math Output Scaling 2 PV. ..... 72
3.3.47. Object 4030h: Math Output Process Value ..... 73
3.3.48. Object 4032h: Math Output Decimal Digits PV ..... 73
3.3.49. Object 4y00h: Math Y Input Source ..... 74
3.3.50. Object 4y01h: Math Y Input Number ..... 75
3.3.51. Object 4y02h: Math Y Input Function Number ..... 75
3.3.52. Object 4y03h: Math Y Input Decimal Digits FV ..... 76
3.3.53. Object 4y20h: Math Y Input Scaling 1 FV ..... 76
3.3.55. Object 4y40h: Math Y Input Gain ..... 77
3.3.56. Object 4y50h: Math Y Operator ..... 78
3.3.57. Object 5010h: Constant Field Value ..... 79
3.3.58. Object 5040h: Fault Detection Field Value ..... 81
3.3.59. Object 5041h: FD Set Threshold ..... 82
3.3.60. Object 5042h: FD Clear Threshold ..... 83
3.3.63. Object 5550h: Enable Automatic Updates ..... 85
3.3.64. Object 5555h: Start in Operational Mode ..... 85
3.4. Emergency Frame Codes (EMCY) ..... 86
3.5. 18 Digital Inputs Fault Mode Behaviour ..... 87
4. TECHNICAL SPECIFICATIONS ..... 88
4.1. Power Supply ..... 88
4.2. Inputs. ..... 88
4.3. Communication ..... 88
4.4. General Specifications ..... 89
5. VERSION HISTORY ..... 90

## 1. OVERVIEW OF CONTROLLER

### 1.1. Description of 18 Digital Inputs Controller

The following User Manual describes the architecture and functionality of the 18 Digital Inputs CANopen® Controller with eighteen digital inputs.

The 18 Digital Inputs Controller has 18 inputs which the first 10 are programmable and can be setup to read: PWM; Frequency/RPM; counter; or digital input signals. The following 8 (DI11-DI18) can be setup to read digital input signals


Figure 1A - Hardware Functional Block Diagram
The 18 Digital Input controller has its own Electronic Data Sheet (.eds) which fully represents the product described in this document. The Electronic Data Sheet file version number is equal to the Object Dictionary version number, represented by the third byte of the Identity Object, Revision Number, see Object 1018h: Identity Object. For the application firmware version 1.xx, the Object Dictionary version number is equal to 1 .

The user should check whether the application firmware installed in the 18 Digital Inputs is covered by this user manual. The user manual is valid for the application firmware with the same major version number. For example, this user manual is valid for any application firmware V1.xx. Updates to the user manual for the same firmware will have letters in the alphabet order after the version number: 1, 1A, 1B, etc.

The application firmware version number can be checked by reading the Identity Object 1018h, see Object 1018h: Identity Object.

### 1.2. Dimensions and Pinout



FRONT VIEW 24 PIN RECEPTACLE

| Grey Connector |  | Black Connector |  |
| :---: | :--- | :---: | :--- |
| Pin \# | Function | Pin \# | Function |
| 1 | CAN_H | 1 | Digital Input 7 |
| 2 | CAN_L | 2 | Digital Input 8 |
| 3 | CAN_Shield | 3 | Digital Input 9 |
| 4 | Ground | 4 | Digital Input 10 |
| 5 | Battery - | 5 | Digital Input 11 |
| 6 | Battery + | 6 | Digital Input 12 |
| 7 | Digital Input 1 | 7 | Digital Input 18 |
| 8 | Digital Input 2 | 8 | Digital Input 17 |
| 9 | Digital Input 3 | 9 | Digital Input 16 |
| 10 | Digital Input 4 | 10 | Digital Input 15 |
| 11 | Digital Input 5 | 11 | Digital Input 14 |
| 12 | Digital Input 6 | 12 | Digital Input 13 |

## 2. USING 18 Digital Inputs THROUGH CANopen ${ }^{\circledR}$

### 2.1. Node ID and Baudrate

The 18 Digital Inputs module supports the Layer Setting Service (LSS) protocols to configure the node-id and baudrate. Refer to the document "LSS Protocol" for more details.

### 2.2. Digital Input Function Block

The digital input (DI) function block only becomes applicable on the input when object 6112h, DI Operation, is set to a digital input response.


Figure 2 - Digital Input Objects
When 6112h is set to 10 = Digital Input, object 2020h DI Pullup/Down Mode will enable the internal pullup/pulldown resistors. The options for object 2020h are shown in Table 1, with the default bolded.

| Value | Meaning |
| :---: | :--- |
| 0 | Pullup/Down Disabled (high impedance input) |
| 1 | $10 \mathrm{k} \Omega$ Pullup Resistor Enabled |
| $\mathbf{2}$ | 10k $\Omega$ Pulldown Resistor Enabled |

Table 1 - DI Pullup/Down Options
Figure 3 shows the hysteresis on the input when switching a discrete signal. A digital input can be switched up to +Vcc (30Vmax.)


Figure 3 - Discrete Input Hysteresis

Object 2030h DI Debounce Filter is applied to the input before the state is read by the processor. The options for object 2030h are shown in Table 2, with the default bolded.

| Value | Meaning |
| :---: | :--- |
| 0 | Filter Disabled |
| 1 | Filter 111ns |
| 2 | Filter 1.78 us |
| 3 | Filter 14.22 us |

Table 2 - DI Debounce Filter Options


Figure 4 - Digital Input Debouncing
Once the raw state has been evaluated, the logical state of the input is determined by object 6002h DI_Polarity_8_Input_Lines. The options for object 6002h are shown in Table 3. The state of the DI will be written to read-only object 6000h DI_Read_state_8_Input_Lines. By default, normal on/off logic is used.

| Value | Meaning |
| :---: | :---: |
| 0 | Normal On/Off |
| 1 | Inverse On/Off |

Table 3 - Object 6002h DI_Polarity_8_Input_Lines options
The format to write to object 6002h is as follows:
Sub-index 1 will determine the following inputs' polarities:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DI8 | DI7 | DI6 | DI5 | DI | DI | DI | DI 1 |

Sub-index 2 will determine the following inputs' polarities:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| DI16 | DI15 | DI14 | DI13 | DI12 | DI11 | DI10 | DI9 |

Sub-index 2 will determine the following inputs' polarities:

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | - | - | - | DI18 | DI17 |

As per the format of object 6002h, the bits in object 6000h DI_Read_state_8_Input_Lines will be written to represent the same inputs' states.

There is another type of 'digital' input that can be selected when 6112h is set to $20=$ Analog On/Off. However, in this case, the input is still configured as an analog input, and therefore the objects from the Analog Input (DI) block are applied instead of those discussed above. Here, objects 2020h, 2030h and 6030h are ignored, and 6000h is written as per the logic shown in Figure 5 . In this case, the MIN parameter is set by object 7120 h DI Scaling 1 FV, and the MAX is set by 7122h DI Scaling 2 FV.

For all other operating modes, object 6000h will always be zero.


Figure 5 - Analog Input Read as Digital

### 2.3. Analog Input Function Block

The analog input (DI) function block is the default logic associate with the universal inputs.


Figure 6 - Analog Input Objects

Object 6112h, DI Operating Mode determines whether the DI or DI function block is associated with an input. The options for object 6112 h are shown in Table 4. No values other than what are shown here will be accepted.

| Value | Meaning |
| :---: | :--- |
| 0 | Channel Off |
| 1 | Normal Operation (analog) |
| 10 | Digital Input (on/off) |
| 20 | Analog and On/Off |

Table 4 - DI Operating Mode Options
The most important object associate with the DI function block is object 6110h DI Sensor Type. By changing this value, and associated with it object 2100h DI Input Range, other objects will be automatically updated by the controller. The options for object 6110h are shown in Table 5, and no values other than what are shown here will be accepted. The inputs are setup to measure voltage by default.

| Value | Meaning |
| :---: | :--- |
| $\mathbf{6 0}$ | Frequency Input (or RPM) |
| 10000 | PWM Input |
| 10001 | 16 -Bit Counter |

Table 5 - DI Sensor Type Options
All 18 digital inputs can be used to measure digital signals, in which case they are fully independent of one another. The first 10 digital inputs have additional functionality to measure Frequency/PWM inputs.

The allowable ranges will depend on the input sensor type selected. Table 6 shows the relationship between the sensor type, and the associated range options. The default value for each range is bolded, and object 2100h DI Range will automatically be updated with this value when 6110 h is changed. The grayed out cells mean that the associate value is not allowed for the range object when that sensor type has been selected.

| Value | Frequency | PWM | 16-Bit Counter |
| :---: | :---: | :---: | :---: |
| 0 | $\mathbf{0 . 5 H z}$ to 50 Hz | Low Freq $(<1 \mathrm{kHz})$ | 1 to 65535 |
| 1 | 10 Hz to 1 kHz | High Freq $(>100 \mathrm{~Hz})$ |  |
| 2 | 100 Hz to 10 kHz |  |  |

Table 6 - DI Input Range Options Depending on Sensor Type
Frequency and PWM inputs use object 2020h DI Pullup/Down Mode (see Table 1) while voltage, current and resistive inputs set this object to zero. Also, a frequency input can be automatically turned into an RPM measurement instead simply by setting object 2101h DI Number of Pulses Per Revolution to a non-zero value. All other input types ignore this object.

Regardless of type, however, all analog inputs can be further filtered once the raw data has been measured (either from ADC or Timer.) Object 61A0h DI Filter Type determines what kind of filter is used per Table 7. By default, additional software filtering is disabled.

| Value | Meaning |
| :---: | :--- |
| $\mathbf{0}$ | No Filter |
| 1 | Moving Average |
| 2 | Repeating Average |
| 3 | Third-Order Low Pass |

Table 7 - DI Filter Type Options
Object 61A1h DI Filter Constant is used with all three types of filters as per the formulas below:

## Calculation with no filter:

Value = Input
The data is simply a 'snapshot' of the latest value measured by the ADC or timer.

## Calculation with the moving average filter:

Value $_{\mathrm{N}}=$ Value $_{\mathrm{N}-1}+\frac{\left(\text { Input }- \text { Value }_{\mathrm{N}-1}\right)}{\text { FilterConstant }}$
This filter is called every 1 ms . The value FilterConstant stored in object 61 A 1 h is 10 by default.

## Calculation with the repeating average filter:

Value $=\frac{\sum \text { Input }_{N}}{\mathrm{~N}}$
At every reading of the input value, it is added to the sum. At every $\mathrm{N}^{\text {th }}$ read, the sum is divided by N , and the result is the new input value. The value and counter will be set to zero for the next read. The value of N is stored in object 61A1h, and is 10 by default. This filter is called every 1 ms . Calculation with the $3^{\text {rd }}$ Order Low Pass filter:

Cino Coefficient for $\operatorname{Input}(\mathrm{n})$
Cin1 Coefficient for Input(n-1) Cout1 Coefficient for Output(n-1)
Cin2 Coefficient for Input(n-2) Cout2 Coefficient for Output(n-2)
Cin3 Coefficient for Input(n-3) Cout3 Coefficient for Output(n-3)
This filter uses 16-bit fixed point math. Object 2120h DI Third-Order Filter Power tells the controller the shift value used when the coefficients were selected.

The value of object 61A1h determines how often the filter is called (in ms), and is set to 10 by default. In between calls, the data of the input signal is the value which was calculated the last time the filter was called. The filter coefficients are stored in objects 2121 h to 2127 h .

The value from the filter is shifted according to read-only object 2102h DI Decimal Digits FV and then written to read-only object 7100h DI Input Field Value.
The value of 2102h will depend on the DI Sensor Type and Input Range selected, and will be automatically updated per Table 8 when either 6110h or 2100 h are changed. All other objects associated with the input field value also apply this object. These objects are 7120h DI Scaling 1

FV, 7122h DI Scaling 2 FV, 7148h DI Span Start, 7149h DI Span End, and 2111h DI Error Clear Hysteresis. These objects are also automatically updated when the Type or Range is changed.

| Sensor Type and Range | Decimal Digits |
| :--- | :--- |
| Frequency: 0.5 Hz to 50 Hz | $2[0.01 \mathrm{~Hz}]$ |
| Frequency: 10 Hz to 1 kHz | $1[0.1 \mathrm{~Hz}]$ |
| Frequency: 100 Hz to 10 kHz | $0[\mathrm{~Hz}]$ |
| Frequency: RPM Mode | $1[0.1 \mathrm{RPM}]$ |
| PWM: All Ranges | $1[0.1 \%]$ |
| 16-Bit Counter | $0[\mathrm{~ms}]$ |
| Digital Input | $0[\mathrm{On} / \mathrm{Off}]$ |

Table 8 - DI Decimal Digits FV Depending on Sensor Type
When the Sensor Type is configured to a 16-Bit Counter input, the input is configured to count pulse on the input until the value in the Measuring Window object (2090h) is reached. While the counter is active, a timer with a 1 ms resolution is running in the background. When the count has been reached, the value in the 1 ms timer is captured and updated to the Field Value object (7100h). The timer is reset until the count value once again reaches the Measuring Window. Error detection objects are not used, since error detection is not possible in this mode.

It is the DI Input FV which is used by the application for error detection, and as a control signal for other logic blocks (i.e. output control.) Object 7100 h is mappable to a TPDO, and is mapped to TPDO1, TPDO2, and TPDO3 by default.

Read-only object 7130h DI Input Process Value is also mappable. However, the default values for objects 7121h DI Scaling 1 PV and 7123h DI Scaling 2 PV are set to equal 7120h and 7122h respectively, while object 6132h DI Decimal Digits PV is automatically initialize to equal 2102h. This means that the default relationship between the FV and PV is one-to-one, so object 7130h is not mapped to a TPDO by default.

Should a different linear relationship between what is measured versus what is sent to the CANopen ${ }^{\circledR}$ bus be desired, objects $6132 \mathrm{~h}, 7121 \mathrm{~h}$ and 7123 h can be changed. The linear relationship profile is shown in Figure 7 below. Should a non-linear response be desired, the lookup table function block can be used instead, as described in section 2.5.


Figure 7 - Analog Input Linear Scaling FV to PV

As stated earlier, the FV scaling objects are automatically updated with the Sensor Type or Range changes. This is because objects 7120 h and 7122 h are not only used in a linear conversion from FV to PV as described above, but also as the minimum and maximum limits when the input is used to control another logic block. Therefore, the values in these objects are important, even when the DI Input PV object is not being used.

The DI Span Start and DI Span End objects are used for fault detection, so they too are automatically updated for sensible values as the Type/Range changes. The Error Clear Hysteresis object is also updated, as it too is measured in the same unit as the DI Input FV object.

Table 9 lists the default values that are loaded into objects 7120h, 7122h, 7148h, 7149h, and 2111h for each Sensor Type and Input Range combination. Recall that these objects all have the decimal digits applied to them as outlined in Table 8.

| Sensor Type/ <br> Input Range | 7148h <br> DI Span Start <br> (i.e. Error Min) | 7120h <br> DI Scaling 1 FV <br> (i.e. Input Min) | 7122h <br> DI Scaling 2 FV <br> (i.e. Input Max) | 7149h <br> DI Span End <br> (i.e. Error Max) | 2111h <br> Error Clear <br> Hysteresis |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Freq: 0.5 Hz to 50 Hz | $100[0.01 \mathrm{~Hz}]$ | $500[0.01 \mathrm{~Hz}]$ | $5000[0.01 \mathrm{~Hz}]$ | $5500[0.01 \mathrm{~Hz}]$ | $20[0.01 \mathrm{~Hz}]$ |
| Freq: 10 Hz to 1 kHz | $50[0.1 \mathrm{~Hz}]$ | $100[0.1 \mathrm{~Hz}]$ | $10000[0.1 \mathrm{~Hz}]$ | $11000[0.1 \mathrm{~Hz}]$ | $50[0.1 \mathrm{~Hz}]$ |
| Freq: 100 Hz to 10 kHz | $50[\mathrm{~Hz}]$ | $100[\mathrm{~Hz}]$ | $10000[\mathrm{~Hz}]$ | $10500[\mathrm{~Hz}]$ | $10[\mathrm{~Hz}]$ |
| Freq: RPM Mode | $500[0.1 \mathrm{RPM}]$ | $1000[0.1 \mathrm{RPM}]$ | $30000[0.1 \mathrm{RPM}]$ | $33000[0.1 \mathrm{RPM}]$ | $100[0.1 \mathrm{RPM}]$ |
| PWM: 0 to $100 \%$ | $10[0.1 \%]$ | $50[0.1 \%]$ | $950[0.1 \%]$ | $990[0.1 \%]$ | $10[0.1 \%]$ |
| $16-B i t$ Counter | OFF | OFF | ON | ON | 0 |
| Digital Input | OFF | OFF | ON | ON | 0 |

Table 9 - DI Object Defaults Based on Sensor Type and Input Range
It might not be desired in a particular application for the automatic updating of objects when a key object is changed, i.e. DI Sensor Type. In this case, object 5550h Enable Automatic Updates can be set to FALSE (true by default) in which case changing an object will have no impact on any other objects. In this mode, the user must manually change all the objects for sensible values or the controller will not work as expected.

When changing these objects, Table 10 outlines the range constraints placed on each based on its Sensor Type and Input Range combination selected. In all cases, the MAX value is the upper end of the range (i.e. 5 V or ) Object 7122 h cannot be set higher than MAX, whereas 7149 h can be set up to $110 \%$ of MAX. Object 2111 h on the other hand can only be set up to maximum value of $10 \%$ of MAX. Table 10 uses the base unit of the input, but recall the limits will also have object 2102 h apply to them as per Table 8.

| Sensor Type/ Input Range | 7148h | 7120h | 7122h | 7149h | 2111h |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Freq: 0.5 Hz to 50 Hz | $\begin{gathered} 0.1 \mathrm{~Hz} \text { to } \\ 7120 \mathrm{~h} \end{gathered}$ | 7148 h to 7122 h If $(7148 \mathrm{~h}<0.5 \mathrm{~Hz}) 0.5 \mathrm{~Hz}$ to 7122 h | 7120h to 7149h If(7149h>MAX) <br> 7120h to MAX | $\begin{aligned} & 7122 \mathrm{~h} \text { to } \\ & 110 \% \text { of } \\ & \text { MAX } \end{aligned}$ | $10 \%$ of MAX |
| Freq: 10 Hz to 1 kHz | 5Hz to 7120h | 7148 h to 7122 h If $(7148 \mathrm{~h}<10 \mathrm{~Hz}) 10 \mathrm{~Hz}$ to 7122 h |  |  |  |
| Freq: 100 Hz to 10 kHz | 50 Hz to 7120h | 7148 h to 7122 h If $(7148 \mathrm{~h}<100 \mathrm{~Hz}) 100 \mathrm{~Hz}$ to 7122 h |  |  |  |

Table 10 - DI Object Ranges Based on Sensor Type and Input Range
The last objects associated with the analog input block left to discuss are those associated with fault detection. Should the calculated input (after measuring and filtering) fall outside of the
allowable range, as defined by the DI Span Start and DI Span End objects, an error flag will be set in the application if and only if object 2110h DI Error Detect Enabled is set to TRUE (1).

When (7100h DI Input FV < 7148h DI Span Start), an "Out of Range Low" flag is set. If the flag stays active for the 2112h DI Error Reaction Delay time, an Input Overload Emergency (EMCY) message will be added to object 1003h Pre-Defined Error Field. Similarly, when (7100h DI Input FV $>7149$ DI Span End), an "Out of Range High" flag is set, and will create an EMCY message should it stay active throughout the delay period. In either case, the application will react to the EMCY message as defined by object 1029h Error Behaviour at the sub-index corresponding to an Input Fault. Refer to section 3.4 and 3.5 for more information about objects 1003 h and 1029 h.

Once the fault has been detected, the associate flag will be cleared only once the input comes back into range. Object 2111h DI Error Clear Hysteresis is used here so that the error flag will not be set/cleared continuously while the DI Input FV hovers around the DI Span Start/End value.

To clear an "Out of Range Low" flag, DI Input FV >= (DI Span Start + DI Error Clear Hysteresis) To clear an "Out of Range High" flag, DI Input FV <= (DI Span End - DI Error Clear Hysteresis) Both flags cannot be active at once. Setting either one of these flags automatically clears the other.

### 2.4. Internal Function Block Control Sources

The 18 Digital Inputs controller allows for internal function block sources to be selected from the list of the logical function blocks supported by the controller. As a result, any output from one function block can be selected as the control source for another. Keep in mind that not all options make sense in all cases, but the complete list of control sources is shown in Table 11.

| Value | Meaning |
| :---: | :--- |
| 0 | Control Source Not Used (Ignored) |
| 1 | CANopen ${ }^{\circledR}$ Message (RPDO) |
| 2 | Analog Input Function Block |
| 3 | Constant Function Block |
| 4 | Lookup Table Function Block |
| 5 | Mathematical Function Block |
| 6 | Programmable Logic Function Block |
| 7 | Power Supply Measured |
| 8 | Processor Temperature Measured |

Table 11 - Control Source Options
In addition to a source, each control also has a number which corresponds to the sub-index of the function block in question. Table 12 outlines the ranges supported for the number objects, depending on the source that had been selected.

| Control Source | Range | Object (Meaning) |
| :---: | :---: | :---: |
| Control Source Not Used | 0 | Ignored |
| CANopen ${ }^{\circledR}$ Message (RPDO) | 1 | 2500h sub-index 1 (Extra Received PV 1) |
|  | 2 | 2500h sub-index 1 (Extra Received PV 2) |
|  | 3 | 2500h sub-index 2 (Extra Received PV 3) |
|  | 4 | 2500h sub-index 3 (Extra Received PV 4) |
|  | 5 | 2500h sub-index 4 (Extra Received PV 5) |
|  | 6 | 2500h sub-index 5 (Extra Received PV 6 ) |
|  | 7 | 2500h sub-index 6 (Extra Received PV 7) |
|  | 8 | 2500h sub-index 7 (Extra Received PV 8) |
|  | 9 | 2500h sub-index 8 (Extra Received PV 9 ) |
|  | 10 | 2500h sub-index 9 (Extra Received PV 10) |
|  | 11 | 2500h sub-index 10 (Extra Received PV 11) |
|  | 12 | 2500h sub-index 11 (Extra Received PV 12) |
| Analog Input Function Block | 1 | 7100h sub-index 1 or 6000 h sub-index 1 bit 0 |
|  | 2 | 7100h sub-index 2 or 6000h sub-index 1 bit 1 |
|  | 3 | 7100h sub-index 3 or 6000 h sub-index 1 bit 2 |
|  | 4 | 7100 h sub-index 4 or 6000 h sub-index 1 bit 3 |
|  | 5 | 7100 h sub-index 5 or 6000 h sub-index 1 bit 4 |
|  | 6 | 7100 h sub-index 6 or 6000 h sub-index 1 bit 5 |
|  | 7 | 7100 h sub-index 7 or 6000 h sub-index 1 bit 6 |
|  | 8 | 7100h sub-index 8 or 6000h sub-index 1 bit 7 |
|  | 9 | 7100 h sub-index 9 or 6000 h sub-index 2 bit 0 |
|  | 10 | 7100h sub-index 10 or 6000h sub-index 2 bit 1 |
| Constant Function Block | 1 | 5010h sub-index 1 (always FALSE) |
|  | 2 | 5010h sub-index 2 (always TRUE) |
|  | 3 | 5010h sub-index 3 (Constant FV 3) |
|  | 4 | 5010h sub-index 4 (Constant FV 4) |
|  | 5 | 5010h sub-index 5 (Constant FV 5) |
|  | 6 | 5010h sub-index 6 (Constant FV 6) |
|  | 7 | 5010h sub-index 7 (Constant FV 7) |
|  | 8 | 5010h sub-index 8 (Constant FV 8) |
|  | 9 | 5010h sub-index 9 (Constant FV 9) |
|  | 10 | 5010h sub-index 10 (Constant FV 10) |
|  | 11 | 5010h sub-index 11 (Constant FV 11) |
|  | 12 | 5010h sub-index 12 (Constant FV 12) |
|  | 13 | 5010h sub-index 13 (Constant FV 13) |
|  | 14 | 5010h sub-index 14 (Constant FV 14) |
|  | 15 | 5010h sub-index 15 (Constant FV 15) |
| Lookup Table Function Block | 1 | 3017h (Lookup Table 1 Output Y-Axis PV) |
|  | 2 | 3027h (Lookup Table 2 Output Y-Axis PV) |
|  | 3 | 3037h (Lookup Table 3 Output Y-Axis PV) |
|  | 4 | 3047h (Lookup Table 4 Output Y-Axis PV) |
|  | 5 | 3057h (Lookup Table 5 Output Y-Axis PV) |
|  | 6 | 3067h (Lookup Table 6 Output Y-Axis PV) |
|  | 7 | 3077h (Lookup Table 7 Output Y-Axis PV) |


|  | 8 | 3087h (Lookup Table 7 Output Y-Axis PV) |
| :---: | :---: | :---: |
|  | 9 | 3097h (Lookup Table 8 Output Y-Axis PV) |
|  | 10 | 3107h (Lookup Table 9 Output Y-Axis PV) |
|  | 11 | 3117h (Lookup Table 10 Output Y-Axis PV) |
|  | 12 | 3127h (Lookup Table 11 Output Y-Axis PV) |
| Mathematical Function Block | 1 | 4350h sub-index 1 (Math Output PV 1) |
|  | 2 | 4350h sub-index 2 (Math Output PV 2) |
|  | 3 | 4350h sub-index 3 (Math Output PV 3) |
|  | 4 | 4350h sub-index 4 (Math Output PV 4) |
|  | 5 | 4350h sub-index 5 (Math Output PV 5) |
|  | 6 | 4350h sub-index 6 (Math Output PV 6) |
| Programmable Logic Function Block | 1 | 3xy7h (Lookup Table Selected by Logic 1) |
|  | 2 | 3xy7h (Lookup Table Selected by Logic 2) |
|  | 3 | 3xy7h (Lookup Table Selected by Logic 3) |
|  | 4 | 3xy7h (Lookup Table Selected by Logic 4) |
| Processor Temperature Measured | N/A | 5040h (Power Supply FV) sub-index 1 |
| Power Supply Measured | N/A | 5040h (Temperature FV) sub-index 2 |

Table 12 - Control Number Options Depending on Source Selected
When using any control source as the X-Axis input to a function block, the corresponding scaling limits are defined as per Table 13. It is the responsibility of the user to make sure that the scaling objects for any function block are setup appropriately depending on the source selected for the XAxis input.

| Control Source | Scaling 1 | Scaling 2 | Dec Digits |
| :---: | :---: | :---: | :---: |
| CANopen ${ }^{\circledR}$ Message - Num 1 to 12 | 2520h | 2522h | 2502h |
| Analog Input Function Block 1-10 | 7120h | 7122h | 6132h |
| Constant Function Block | N/A | N/A | N/A (float) |
| Lookup Table yz Function Block (where $\mathrm{yz}=01$ to 12) | 0 or lowest from 3yz6h(*) | 100 or highest from 3yz6h ${ }^{(*)}$ | 3yz3h |
| Mathematical Function | 4021h | 4023h | 4032h |
| Programmable Logic Function | 0\% | 100\% | 1 (fixed) |
| Power Supply Measured | N/A | N/A | 1 (fixed) |
| Processor Temperature Measured | N/A | N/A | 1 (fixed) |

Table 13 - Scaling Limits per Control Source

### 2.5. Lookup Table Function Block

The lookup table (LTz) function blocks are not used by default.


Figure 8 - Lookup Table Objects
Lookup tables are used to give an output response of up to 10 slopes per input. The array size of the objects 3yz5h LTyz Point Response, 3yz6h LTyz Point X-Axis PV and 3yz7h Point Y-Axis PV shown in the block diagram above is therefore 11.

Note: If more than 10 slopes are required, a Programmable Logic Block can be used to combine up to three tables to get 30 slopes, as is described in Section 2.6.

A parameter that will affect the function block is object $3 y z 5 h$ sub-index 1 which defines the " X Axis Type". By default, the tables have a 'Data Response’ output (0). Alternatively, it can be selected as a ‘Time Response’ (1). ,

There are two (or three) other key parameters that will affect how this function block will behave depending on the "X-Axis Type" chosen. If chosen 'Data Response', then the objects 3yzOh Lookup Table yz Input X-Axis Source and 3yz1h Lookup Table yz Input X-Axis Number together define the control source for the function block. When it is changed, the table values in object $3 y z 6 h$ need to be updated with new defaults based on the X-Axis source selected as described in Tables 4 and 5. If however, the "X-Axis Type" is chosen to be 'Time Response', an additional parameter is taken into consideration - object 3yz2h, Lookup Table yz Auto Repeat. These will be described in more detail in Section 2.5.4.

### 2.5.1. X-Axis, Input Data Response

In the case where the "X-Axis Type" = 'Data Response', the points on the X-Axis represents the data of the control source.

However, should the minimum input be less than zero, for example a resistive input that is reflecting temperature in the range of $-40^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$, then the "LTz Point X-Axis PV sub-index $1^{\prime \prime}$ will be set to the minimum instead, in this case $-40^{\circ} \mathrm{C}$.

The constraint on the $X$-Axis data is that the next index value is greater than or equal to the one below it, as shown in the equation below. Therefore, when adjusting the X -Axis data, it is recommended that $X_{11}$ is changed first, then lower indexes in descending order.

MinInputRange $<=\mathrm{X}_{1}<=\mathrm{X}_{2}<=\mathrm{X}_{3}<=\mathrm{X}_{4}<=\mathrm{X}_{5}<=\mathrm{X}_{6}<=\mathrm{X}_{7}<=\mathrm{X}_{8}<=\mathrm{X}_{9}<=\mathrm{X}_{10}<=\mathrm{X}_{11}<=$ MaxInputRange
As stated earlier, MinInputRange and MaxInputRange will be determined by the scaling objects associated with X-Axis Source that has been selected, as outlined in Table 11.

### 2.5.2. Y-Axis, Lookup Table Output

## By default, it is assumed that the output from the lookup table function block will be a percentage value in the range of 0 to 100 .

In fact, so long as all the data in the Y -Axis is $0<=\mathrm{Y}[\mathrm{i}]<=100$ (where $\mathrm{i}=1$ to 11 ) then other function blocks using the lookup table as a control source will have 0 and 100 as the Scaling 1 and Scaling 2 values used in linear calculations shown in Table 13.

However, the Y -Axis has no constraints on the data that it represents. This means that inverse, or increasing/decreasing or other responses can be easily established. The Y-Axis does not have to be a percentage output, but could represent full scale process values instead.
In all cases, the controller looks at the entire range of the data in the Y-Axis sub-indexes, and selects the lowest value as the MinOutRange and the highest value as the MaxOutRange. So long as they are not both within the 0 to 100 range, they are passed directly to other function blocks as the limits on the lookup table output. (i.e. Scaling 1 and Scaling 2 values in linear calculations.)

Even if some of the data points are 'Ignored' as described in Section 2.5.3, they are still used in the Y-Axis range determination. If not all the data points are going to be used, it is recommended that Y10 be set to the minimum end of the range, and Y11 to the maximum first. This way, the user can get predictable results when using the table to drive another function block, such as an analog output.

### 2.5.3. Point To Point Response

By default, all six lookup tables have a simple linear response from 0 to 100 in steps of 10 for both the X and Y axes. For a smooth linear response, each point in the 30z5h LTz Point Response array is setup for a 'Ramp To' output.

Alternatively, the user could select a 'Step To' response for $30 z 4 \mathrm{~h}$, where $\mathrm{N}=2$ to 11 . In this case, any input value between $X_{N-1}$ to $X_{N}$ will result in an output from the lookup table function block of $\mathrm{Y}_{\mathrm{N}}$. (Recall: LTz Point Response sub-index 1 defines the $X$-Axis type)

Figure 10 shows the difference between these two response profiles with the default settings.


Figure 9 - Lookup Table Defaults with Ramp and Step Responses
Lastly, any point except $(1,1)$ can be selected for an 'Ignore’ response. If LTz Point Response sub-index $\mathbf{N}$ is set to ignore, then all points from $\left(X_{N}, Y_{N}\right)$ to $\left(X_{11}, Y_{11}\right)$ will also be ignored. For all data greater than $X_{N-1}$, the output from the lookup table function block will be $\mathrm{Y}_{\mathrm{N}-1}$.

A combination of 'Ramp To’, 'Jump To’ and 'Ignore’ responses can be used to create an application specific output profile. An example of where the same input is used as the X-Axis for two tables, but where the output profiles 'mirror' each other for a deadband joystick response is shown in Figure 10. The example shows a dual slope percentage output response for each side of the deadband, but additional slopes can be easily added as needed. (Note: In this case, since the analog outputs are responding directly to the profile from the lookup tables, both would have object 2342h AO Control Response set to a 'Single Output Profile.')


Figure 10 - Lookup Table Examples to Setup for Dual-Slope Joystick Deadband Response
To summarize, Table 14 outlines the different responses that can be selected for object $30 z 4 \mathrm{~h}$, both for the X -Axis type and for each point in the table.

| Sub-Index | Value | Meaning |
| :---: | :---: | :--- |
| 1 | 0 | Data Response (X-Axis Type) |
| 2 to 11 |  | Ignore (this point and all following it) |


| 1 | 1 | Time Response (X-Axis Type) |
| :---: | :---: | :---: |
| 2 to 11 |  | Ramp To (this point) |
| 1 | 2 | N/A (not an allowed option) |
| 2 to 11 |  | Jump To (this point) |

Table 14 - LTyz Point Response Options

### 2.5.4. X-Axis, Time Response

A lookup table can also be used to get a custom output response where the "X-Axis Type" is a 'Time Response'. When this is selected, the X-Axis now represents time, in units of milliseconds, while the Y -Axis still represents the output of the function block.

With this response, the sequence will start depending on two parameters:

- Lookup Table yz Input X-Axis Source Object 3yzOh and;
- Lookup Table yz Auto Repeat Object 3yz2h

By default, the "Auto Repeat" object is set to FALSE (0). In this case, the lookup table will react in the following way:

The X-Axis control source is treated as a digital input. When the control input is ON, the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the output will remain at the last output at the end of the profile until the control input turns OFF.

However, when the "Auto Repeat" object is set to TRUE (1), the lookup table will react in the following way:

When the control input is ON, the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the lookup table will revert back to the first point in the table and Auto Repeat the sequence. This will continue for as long as the input remains ON. Once the input turns OFF, the lookup table sequence will stop and the output of the lookup table is zero.

Note: When the control input is OFF, the output is always at zero. When the input comes ON, the profile will ALWAYS start at position $\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)$ which is 0 output for 0 ms .

When using the lookup table to drive an output based on time, it is mandatory that objects 2330 h Ramp Up and 2331h Ramp Down in the analog output function block be set to zero. Otherwise, the output result will not match the profile as expected. Recall, also, that the AO scaling should be set to match the Y-Axis scaling of the table in order to get a $1: 1$ response of AO Output FV versus LTyz Output Y-Axis PV.
In a time response, the data in object 30z6h LTyz Point X-Axis PV is measured in milliseconds, and object 3yz3h LTyz X-Axis Decimal Digits PV is automatically set to 0 . A minimum value of 1 ms must be selected for all points other than sub-index 1 which is automatically set to [0,0]. The interval time between each point on the $X$-axis can be set anywhere from 1 ms to 24 hours. [86,400,000 ms].

### 2.6. Programmable Logic Function Block

The programmable logic blocks (LB(3-x)) functions are not used by default.


Figure 11 - Logic Block Objects

This function block is obviously the most complicated of them all, but very powerful. Any LBx (where $X=4$ to 7 ) can be linked with up to three lookup tables, any one of which would be selected only under given conditions. Any three tables (of the available 12) can be associated with the logic, and which ones are used is fully configurable on object $3 \times 01 \mathrm{LB}(3-x)$ Lookup Table Number.

Should the conditions be such that a particular table (A, B or C) has been selected as described in Section 2.5.2, then the output from the selected table, at any given time, will be passed directly to LB(3-x)'s corresponding sub-index $X$ in read-only mappable object 3320h Logic Block Output PV. The active table number can read from read-only object 3310h Logic Block Selected Table.

Note: In this document, the term $L B(3-x)$ refers to Logic Blocks 1 to 4. Due to the CANopen ${ }^{\circledR}$ Object indices, Logic Block 1 begins at 3401 h where $x$, in this case, is 4 .

Therefore, an LBx allows up to three different responses to the same input, or three different responses to different inputs, to become the control for another function block, such as an analog output. Here, the "Control Source" for the reactive block would be selected to be the 'Programmable Logic Function Block,'.

In order to enable any one of logic blocks, the corresponding sub-index in object 3300h Logic Block Enable must be set to TRUE. They are all disabled by default.

Logic is evaluated in the order shown in Figure 13. Only if a lower indexed table (A, B, C) has not been selected will the conditions for the next table be looked at. The default table is always selected as soon as it is evaluated. It is therefore required that the default table always be the highest index in any configuration.


Figure 12 - Logic Block Flowchart

### 2.6.1. Conditions Evaluation

The first step in determining which table will be selected as the active table is to first evaluate the conditions associated with a given table. Each table has associated with it up to three conditions that can be evaluated. Conditional objects are custom DEFSTRUCT objects defined as shown in Table 15.

| Index | Sub-Index | Name | Data Type |
| :--- | :--- | :--- | :---: |
| $3 \mathrm{xyz}^{*}$ | 0 | Highest sub-index supported | UNSIGNED8 |
|  | 1 | Argument 1 Source | UNSIGNED8 |
|  | 2 | Argument 1 Number | UNSIGNED8 |
|  | 3 | Argument 2 Source | UNSIGNED8 |
|  | 4 | Argument 2 Number | UNSIGNED8 |
|  | 5 | Operator | UNSIGNED8 |

* Logic Block $X$ Function $Y$ Condition $Z$, where $X=4$ to $7, Y=A, B$ or $C$, and $Z=1$ to 3

Table 15 - LB(3-x) Condition Structure Definition
Objects $3 \times 11 \mathrm{~h}, 3 \times 12 \mathrm{~h}$ and $3 \times 13 \mathrm{~h}$ are the conditions evaluated for selecting Table A . Objects $3 \times 21 \mathrm{~h}, 3 \times 22 \mathrm{~h}$ and $3 \times 23 \mathrm{~h}$ are the conditions evaluated for selecting Table B. Objects $3 \times 31 \mathrm{~h}, 3 \times 32 \mathrm{~h}$ and $3 \times 33 \mathrm{~h}$ are the conditions evaluated for selecting Table C.

Argument 1 is always a logical output from another function block, as listed in Table 4. As always, the input is a combination of the functional block objects $3 x y z h$ sub-index 1 "Argument 1 Source" and "Argument 1 Number."

Argument 2 on the other hand, could either be another logical output such as with Argument 1, OR a constant value set by the user. To use a constant as the second argument in the operation, set "Argument 2 Source" to 'Constant Function Block', and "Argument 2 Number" to the desired sub-index. When defining the constant, make sure it uses the same resolution (decimal digits) as the Argument 1 input.

Argument 1 is evaluated against Argument 2 based on the "Operator" selected in sub-index 5 of the condition object. The options for the operator are listed in Table 16, and the default value is always 'Equal' for all condition objects.

| Value | Meaning |
| :---: | :--- |
| $\mathbf{0}$ | $=$, Equal |
| 1 | $!=$, Not Equal |
| 2 | $>$, Greater Than |
| 3 | $>=$, Greater Than or Equal |
| 4 | <, Less Than |
| 5 | <=, Less Than or Equal |

Table 16 - LB(3-x) Condition Operator Options
By default, both arguments are set to 'Control Source Not Used' which disables the condition, and automatically results in a value of N/A as the result. Although is generally considered that each condition will be evaluated as either TRUE or FALSE, the reality is that there could be four possible results, as described in Table 17.

| Value | Meaning | Reason |
| :---: | :--- | :--- |
| 0 | False | (Argument 1) Operator (Argument 2) = False |
| 1 | True | (Argument 1) Operator (Argument 2) = True |
| 2 | Error | Argument 1 or 2 output was reported as being in an error state |
| 3 | Not Applicable | Argument 1 or 2 is not available (i.e. set to 'Control Source Not Used') |

Table 17 - LB(3-x) Condition Evaluation Results

### 2.6.2. Table Selection

In order to determine if a particular table will be selected, logical operations are performed on the results of the conditions as determined by the logic in Section 2.5.1. There are several logical combinations that can be selected, as listed in Table 20. The default value for object 3x02h LB(3x) Function Logical Operator is dependent on the sub-index. For sub-index 1 (Table A) and 2 (Table B), the 'Cnd1 And Cnd2 And Cnd3' operator is used, whereas sub-index 3 (Table C) is setup as the "Default Table" response.

| Value | Meaning |
| :---: | :--- |
| 0 | Default Table |
| 1 | Cnd1 And Cnd2 And Cnd3 |
| 2 | Cnd1 Or Cnd2 Or Cnd3 |
| 3 | (Cnd1 And Cnd2) Or Cnd3 |
| 4 | (Cnd1 Or Cnd2) And Cnd3 |

Table 20 - LB(3-x) Function Logical Operator Options
Not every evaluation is going to need all three conditions. The case given in the earlier section, for example, only has one condition listed, i.e. that the Engine RPM be below a certain value. Therefore, it is important to understand how the logical operators would evaluate an Error or N/A result for a condition, as outlined in Table 20.

| Logical Operator | Select Conditions Criteria |
| :--- | :--- |
| Default Table | Associated table is automatically selected as soon as it is evaluated. |
| Cnd1 And Cnd2 And Cnd3 | Should be used when two or three conditions are relevant, and all <br> must be True to select the table. <br> If any condition equals False or Error, the table is not selected. <br> An N/A is treated like a True. <br> If all three conditions are True (or N/A), the table is selected. <br> If((Cnd1==True) \&\&(Cnd2==True)\&\&(Cnd3==True)) Then Use Table |
| Cnd1 Or Cnd2 Or Cnd3 | Should be used when only one condition is relevant. Can also be <br> used with two or three relevant conditions. <br> If any condition is evaluated as True, the table is selected. <br> Error or N/A results are treated as False <br> If((Cnd1==True) \\| (Cnd2==True) \| (Cnd3==True)) Then Use Table |
| (Cnd1 And Cnd2) Or Cnd3 | To be used only when all three conditions are relevant. <br> If both Condition 1 and Condition 2 are True, OR Condition 3 is True, <br> the table is selected. Error or N/A results are treated as False <br> If ((Cnd1==True)\&\&(Cnd2==True)) \\| (Cnd3==True)) Then Use Table |


| (Cnd1 Or Cnd2) And Cnd3 | To be used only when all three conditions are relevant. |
| :--- | :--- |
|  | If Condition 1 And Condition 3 are True, OR Condition 2 And Condition |
| 3 are True, the table is selected. Error or N/A results are treated as |  |
|  | False |
|  | If $((($ Cnd1 $==$ True $) \\|($ Cnd2 $==$ True $)) \& \&($ Cnd3==True $))$ Then Use Table |

## Table 20 - LB(3-x) Conditions Evaluation Based on Selected Logical Operator

If the result of the function logic is TRUE, then the associated lookup table (see object $4 x 01 \mathrm{~h}$ ) is immediately selected as the source for the logic output. No further conditions for other tables are evaluated. For this reason, the 'Default Table' should always be setup as the highest letter table being used (A, B or C) If no default response has been setup, the Table A automatically becomes the default when no conditions are true for any table to be selected. This scenario should be avoided whenever possible so as to not result in unpredictable output responses.

The table number that has been selected as the output source is written to sub-index $X$ of readonly object 4010h Logic Block Selected Table. This will change as different conditions result in different tables being used.

### 2.6.3. Logic Block Output

Recall that Table $Y$, where $Y=A, B$ or $C$ in the $L B(3-x)$ function block does NOT mean lookup table 1 to 3. Each table has object 3x01h LB(3-x) Lookup Table Number which allows the user to select which lookup tables they want associated with a particular logic block. The default tables associated with each logic block are listed in Table 20.

| Programmable <br> Logic Block Number | Table A - Lookup <br> Table Block Number | Table B - Lookup <br> Table Block Number | Table C - Lookup <br> Table Block Number |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 |
| 2 | 4 | 5 | 6 |
| 3 | 7 | 8 | 9 |
| 4 | 10 | 11 | 12 |

Table 20 - LB(3-x) Default Lookup Tables
If the associated Lookup Table $Y Z$ (where $Y Z$ equals 3310 h sub-index $X$ ) does not have an " $X$ Axis Source" selected, then the output of LB(3-x) will always be "Not Available" so long as that table is selected. However, should LTyz be configured for a valid response to an input, be it Data or Time, the output of the LTyz function block (i.e. the Y-Axis data that has been selected based on the X -Axis value) will become the output of the $\mathrm{LB}(3-x)$ function block so long as that table is selected.

The LB(3-x) output is always setup as a percentage, based on the range of the Y-Axis for the associated table (see Section 2.5.2) It is written to sub-index $X$ of read-only object 3320h Logic Block Output PV with a resolution of 1 decimal place.

### 2.7. Math Function Block

There are six mathematic function blocks that allow the user to define basic algorithms. Math function block Z = 1 to 6 will be enabled based on sub-index $Z$ in object 4000 Math Enable.


Figure 13 - Math Function Block Objects
A math function block can take up to six input signals. Each input is then scaled according the associated scaling and gain objects. A "Math Input $X$ " is determined by the corresponding subindex $X=1$ to 6 of the objects $4 y 00$ hath $Y$ Input Source and $4 y 01 h$ Math Y Input Number. Here, $y=1$ to 6; corresponding the Math 1- Math 6.

Inputs are converted into a percentage value based on objects 4y20h Math Y Scaling 1 FV and $4 y 22 h$ Math Y Scaling 2 FV. Before being used in the calculation, these objects apply the resolution shift defined by object $4 y 02 \mathrm{~h}$ Math Y Decimal Digits FV. As with any other function block using a control source for the X-Axis in a conversion, the scaling objects should be selected to match the values in the control's corresponding objects as per Table 11.

For additional flexibility, the user can also adjust object 4y40h Math Y Input Gain. This object has a fixed decimal digit resolution of 2 , and a range of -100 to 100 . By default, each input has a gain of 1.0 .

For example, in the case where the user may want to combine two inputs such that a joystick (Input 1) is the primary control of an output, but the speed can be incremented or decremented based on a potentiometer (Input 2), it may be desired that $75 \%$ of the scale is controlled by the joystick position, while the potentiometer can increase or decrease the $\mathrm{min} / \mathrm{max}$ output by up to
$25 \%$. In this case, Input 1 would have a gain of 0.75 , while Input 2 uses 0.25 . The resulting addition will give a command from 0 to $100 \%$ based on the combined positions of both inputs.

For each input pair, the appropriate arithmetic or logical operation is performed on the two inputs, $\ln A$ and $\operatorname{InB}$, according the associated function in sub-index of $\operatorname{lnB}$ in object $4 y 50 h$ Math $Y$ Operator. The list of selectable function operations is defined in Table 21.

| 0 | = | True when InA Equals InB |
| :---: | :---: | :---: |
| 1 | != | True when $\operatorname{In} A$ Not Equal $\operatorname{In} B$ |
| 2 | > | True when InA Greater Than InB |
| 3 | >= | True when InA Greater Than or Equal InB |
| 4 | < | True when InA Less Than InB |
| 5 | <= | True when InA Less Than or Equal InB |
| 6 | OR | True when $\operatorname{In} A$ or $\operatorname{In} \mathrm{B}$ is True |
| 7 | NOR | True when $\ln \mathrm{A}$ and $\ln B$ are False |
| 8 | AND | True when $\ln A$ and $\ln B$ are True |
| 9 | NAND | True when $\operatorname{In} \mathrm{A}$ and $\operatorname{InB}$ are not both True |
| 10 | XOR | True when $\ln \mathrm{A} / \ln \mathrm{B}$ is True, but not both |
| 11 | XNOR | True when $\ln A$ and $\operatorname{In} B$ are both True or False |
| 12 | + | Result $=\ln A$ plus $\ln B$ |
| 13 | - | Result $=\ln A$ minus $\ln B$ |
| 14 | X | Result $=\ln$ A times $\ln B$ |
| 15 | 1 | Result $=\operatorname{In} A$ divided by InB |
| 16 | MIN | Result = Smallest of InA and InB |
| 17 | MAX | Result = Largest of $\ln A$ and $\ln B$ |

Table 21 - Object 4y50h Math Function Operators
For Function 1, $\ln A$ and $\operatorname{In} B$ are Math Inputs 1 and 2, respectively.
For Function 2, $\ln A$ and $\operatorname{In} B$ are Math Inputs 3 and 4, respectively.
For Function 3, $\ln A$ and $\ln B$ are Math Inputs 5 and 6, respectively.
Exclusively within a Math Block, there is a third control parameter: Object 4y02h, Math $\mathbf{Y}$ Function Number. This parameter allows for the result of any Function (1, 2 or 3 ) to be the input to any Math Input Y within the same Math Block. Therefore, Math Y Input Source must be a Math Block and Math Y Input Number must be the same number as being configured. When these four parameters match, if Math Y Function Number is set to 1, 2, or 3, the respective input will be the result of the Function selected. By default, Math Y Function Number is set to 0 - in which case this parameter is ignored and uses the Math Block output result. These functions can only be used within the Math Block. They can not be used for other Math Blocks or logic blocks.

This allows for more versatility within the Math Block. For a valid result in each Function, both inputs must be non-zero value (other than 'Control Source Not Used'). Otherwise, the corresponding Function is ignored. Furthermore, for a valid/expected output result in each Math Block, it is necessary to keep in mind how the Functions link to one another within the Math Block. As an example, consider all 6 inputs to be CANopen ${ }^{\circledR}$ Messages 1 to 6 (thus using all 3 Functions). Since all 3 functions are used but Function 3 has no relation to Function 1 or 2, the result of the Math Block will be the result of Function 3, thus, ignoring Functions 1 and 2.

For logical operators (6 to 11), any SCALED input greater than or equal to 0.5 is treated as a TRUE input. For logic output operators (0 to 11), the result of the calculation for the function will always be 0 (FALSE) or 1 (TRUE).

Error data (i.e. input measured out of range) is always treated as a 0.0 input into the function.
For the arithmetic functions (12 to 17), it is recommended to scale the data such that the resulting operation will not exceed full scale (0 to 100\%) and saturate the output result.

When dividing, a zero $\operatorname{InB}$ value will always result is a zero output value for the associated function. When subtracting, a negative result will always be treated as a zero, unless the function is multiplied by a negative one, or the inputs are scaled with a negative coefficient first.

The resulting final mathematical output calculation is in the appropriate physical units using object 4021h Math Output Scaling 1 PV and 4023h Math Output Scaling 2 PV. These objects are also considered the Min and Max values of the Math Block output and apply the resolution shift defined by object 4032h Math Output Decimal Digits PV. The result is written to read-only object 4030h Math Output PV. These scaling objects should also be taken into account when the Math Function is selected as the input source for another function block, as outlined in Table 11.

### 2.8. Fault Detection

In addition to the 10 inputs, the 18 Digital Inputs module also has the ability to detect and report other faults. The types of faults it can detect are:

- Module Over-Temperature
- Power Supply Over Voltage
- Power Supply Under Voltage

The objects associated with Fault Detection are all manufacturer defined objects, and are described in detail in the Object Dictionary.

## 3. OBJECT DICTIONARY

The CANopen ${ }^{\circledR}$ object dictionary of the 18 Digital Inputs Controller is based on CiA device profile DS-404 V1.2. (Device profile for measurement devices and closed-loop controllers). The object dictionary also includes some manufacturer-specific objects for extended functionality.

### 3.1. COMMUNICATION OBJECTS

The communication objects supported by the 18 Digital Inputs are listed in the following table. A more detailed description of some of the objects is given in the following subchapters. Only those objects that have device-profile specific information are described. For more information on the other objects, refer to the generic CANopen ${ }^{\circledR}$ protocol specification DS-301.

| Index <br> (hex) | Object | Object Type | Data Type | Access | PDO <br> Mapping |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 | Device Type | VAR | UNSIGNED32 | RO | No |
| 1001 | Error Register | VAR | UNSIGNED8 | RO | No |
| 1002 | Manufacturer Status Register | VAR | UNSIGNED32 | RO | No |
| 1003 | Pre-Defined Error Field | ARRAY | UNSIGNED32 | RO | No |
| 100C | Guard Time | VAR | UNSIGNED16 | RW | No |
| 100D | Life Time Factor | VAR | UNSIGNED8 | RW | No |
| 1010 | Store Parameters | ARRAY | UNSIGNED32 | RW | No |
| 1011 | Restore Default Parameters | ARRAY | UNSIGNED32 | RW | No |
| 1016 | Consumer Heartbeat Time | ARRAY | UNSIGNED32 | RW | No |
| 1017 | Producer Heartbeat Time | VAR | UNSIGNED16 | RW | No |
| 1018 | Identity Object | RECORD |  | RO | No |
| 1020 | Verify Configuration | ARRAY | UNSIGNED32 | RW | No |
| 1029 | Error Behaviour | ARRAY | UNSIGNED8 | RW | No |
| 1400 | RPDO1 Communication Parameter | RECORD |  | RW | No |
| 1401 | RPDO2 Communication Parameter | RECORD |  | RW | No |
| 1402 | RPDO3 Communication Parameter | RECORD |  | RW | No |
| 1403 | RPDO4 Communication Parameter | RECORD |  | RW | No |
| 1600 | RPDO1 Mapping Parameter | RECORD |  | RW | No |
| 1601 | RPDO2 Mapping Parameter | RECORD |  | RW | No |
| 1602 | RPDO3 Mapping Parameter | RECORD |  | RW | No |
| 1603 | RPDO4 Mapping Parameter | RECORD |  | RW | No |
| 1800 | TPDO1 Communication Parameter | RECORD |  | RW | No |
| 1801 | TPDO2 Communication Parameter | RECORD |  | RW | No |
| 1802 | TPDO3 Communication Parameter | RECORD |  | RW | No |
| 1803 | TPDO4 Communication Parameter | RECORD |  | RW | No |
| 1804 | TPDO5 Communication Parameter | RECORD |  | RW | No |
| 1805 | TPDO6 Communication Parameter | RECORD |  | RW | No |
| 1A00 | TPDO1 Mapping Parameter | RECORD |  | RW | No |
| 1A01 | TPDO2 Mapping Parameter | RECORD |  | RW | No |
| 1A02 | TPDO3 Mapping Parameter | RECORD |  | RW | No |
| 1A03 | TPDO4 Mapping Parameter | RECORD |  | RW | No |
| 1A04 | TPDO5 Mapping Parameter | RECORD |  | RW | No |
| 1A05 | TPDO6 Mapping Parameter | RECORD |  | RW | No |

### 3.1.1. PDO Parameters

All RPDOs and TPDOs in the 18 Digital Inputs use the same default communication parameters, respectively. The PDO IDs are set according to the pre-defined connection set described in [DS301]. All receive PDOs are set to transmission type 255, and all transmit PDOs to transmission type 254 , with the event timer (subindex 5 ) set to 100 (100ms).

All PDOs are dynamically mappable, and the user can therefore change the mapping of the PDOs. The granularity is 8 -bits, so the objects can be mapped with byte offsets. The mapping parameter records include 4 subindexes for the PDO mapping. The default PDO mappings are listed in the following tables.

RPDO1: default ID 0x200 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 4 | Number of mapped application objects in PDO |
| 1 | $0 \times 25000110$ | Extra Received PV 1 |
| 2 | $0 \times 25000210$ | Extra Received PV 2 |
| 3 | $0 \times 25000310$ | Extra Received PV 3 |
| 4 | $0 \times 25000410$ | Extra Received PV 4 |

RPDO2: default ID 0x300 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 4 | Number of mapped application objects in PDO |
| 1 | $0 \times 25000510$ | Extra Received PV 5 |
| 2 | $0 \times 25000610$ | Extra Received PV 6 |
| 3 | $0 \times 25000710$ | Extra Received PV 7 |
| 4 | $0 \times 25000810$ | Extra Received PV 8 |

RPDO3: default ID 0x400 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 0 | Number of mapped application objects in PDO |
| 1 | $0 \times 25000910$ | Extra Received PV 9 |
| 2 | 0x25000A10 | Extra Received PV 10 |
| 3 | $0 \times 25000 \mathrm{~B} 10$ | Extra Received PV 11 |
| 4 | $0 x 25000 \mathrm{C} 10$ | Extra Received PV 12 |

RPDO4: default ID 0x500 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 0 | Number of mapped application objects in PDO |
| 1 | 0 |  |
| 2 | 0 |  |
| 3 | 0 |  |
| 4 | 0 |  |

TPD01: default ID 0x180 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 4 | Number of mapped application objects in PDO |
| 1 | $0 \times 71000110$ | DI Input Field Value for DI 1 |
| 2 | $0 \times 71000210$ | DI Input Field Value for DI 2 |
| 3 | $0 \times 71000310$ | DI Input Field Value for DI 3 |
| 4 | $0 \times 71000410$ | DI Input Field Value for DI 4 |

## TPDO2: default ID 0x280 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 4 | Number of mapped application objects in PDO |
| 1 | $0 \times 71000510$ | DI Input Field Value for DI 5 |
| 2 | $0 \times 71000610$ | DI Input Field Value for DI 6 |
| 3 | $0 \times 71000710$ | DI Input Field Value for DI 7 |
| 4 | $0 \times 71000810$ | DI Input Field Value for DI 8 |

TPDO3: default ID 0x380 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 2 | Number of mapped application objects in PDO |
| 1 | $0 \times 71000910$ | DI Input Field Value for DI 9 |
| 2 | $0 \times 71000$ A10 | DI Input Field Value for DI 10 |
| 3 | 0 |  |
| 4 | 0 |  |

TPDO4: default ID 0x480 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 2 | Number of mapped application objects in PDO |
| 1 | $0 \times 62000108$ | DI Input Field Value for DI1-8 |
| 2 | $0 \times 62000208$ | DI Input Field Value for DI9-10 |
| 3 | 0 |  |
| 4 | 0 |  |

TPDO5: default ID 0x181 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 0 | Number of mapped application objects in PDO |
| 1 | 0 |  |
| 2 | 0 |  |
| 3 | 0 |  |
| 4 | 0 |  |

TPDO6: default ID 0x281 + node ID

| Subindex | Value | Object |
| :--- | :--- | :--- |
| 0 | 2 | Number of mapped application objects in PDO |
| 1 | $0 \times 50400120$ | Power Supply |
| 2 | $0 \times 50400220$ | Processor Temperature |
| 3 | 0 |  |
| 4 | 0 |  |

### 3.1.2. Object 1000h: Device Type

This object contains information about the device type as per device profile DS-404. The value stored in this object is 0x00030194, indicating that the 18 Digital Inputs includes the following function blocks defined in the device profile.

- Digital Input(DI)
- Analog Input (DI)


## Object Description

| Index | 1000h |
| :--- | :--- |
| Name | Device Type |
| Object Type | VAR |
| Data Type | UNSIGNED32 |

## Entry Description

| Access | RO |
| :--- | :--- |
| PDO Mapping | No |
| Value Range | $0 \times 00030194$ |
| Default Value | $0 \times 00030194$ |

### 3.1.3. Object 1001h: Error Register

This object is an error register for the device. Any time there is an error detected by the 10 Universal Signal Inputs, the Generic Error Bit (bit 0) is set. Only if there are no errors in the module will this bit be cleared. No other bits in this register are used by the 10 Universal Signal Inputs.

Object Description

| Index | 1001 h |
| :--- | :--- |
| Name | Error Register |
| Object Type | VAR |
| Data Type | UNSIGNED8 |

## Entry Description

| Access | RO |
| :--- | :--- |
| PDO Mapping | No |
| Value Range | 00 h or 01h |
| Default Value | 0 |

### 3.1.4. Object 1003h: Pre-Defined Error Field

The object 1003h provides an error history by listing the errors in the order that they have occurred. An error is added to the top of the list when it occurs, and is immediately removed when the error condition has been cleared. The latest error is always at subindex 1, with subindex 0 containing the number of errors currently in the list. When the device is in an error-free state, the value of subindex 0 is zero.

The error list may be cleared by writing a zero to subindex 0, which will clear all errors from the list, regardless of whether or not they are still present. Clearing the list does NOT mean that the module will return to the error-free behaviour state if at least one error is still active.

The 18 Digital Inputs has a limitation of a maximum of 16 errors in the list. If the device registers more errors, the list will be truncated, and the oldest entries will be lost.

The error codes stored in the list are 32-bit unsigned numbers, consisting of two 16-bit fields. The lower 16-bit field is the EMCY error code, and the higher 16-bit field is a manufacturer-specific code. The manufacturer-specific code is divided into two 8-bit fields, with the higher byte indicating the error description, and the lower byte indicating the channel number where the error occurred.

| MSB |  |  | LSB |
| :--- | :--- | :--- | :--- |
| Error Description | Channel | EMCY Error Code |  |

See Section 4 for a complete list of the error code fields.
Object Description

| Index | 1003 h |
| :--- | :--- |
| Name | Pre-Defined Error Field |
| Object Type | VAR |
| Data Type | UNSIGNED32 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 0 to 16 |
| Default Value | 0 |


| Subindex | 1h to 10h |
| :--- | :--- |
| Description | Standard error field |
| Access | RO |
| PDO Mapping | No |
| Value Range | UNSIGNED32 |
| Default Value | 0 |

### 3.1.5. Object 1010h: Store Parameters

This object supports the saving of parameters in non-volatile memory. In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate subindex. The signature is "save".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

| $e$ | $v$ | $a$ | $s$ |
| :---: | :---: | :---: | :---: |
| 65 h | 76 h | 61 h | 73 h |

On reception of the correct signature to an appropriate subindex, the 18 Digital Inputs will store the parameters in non-volatile memory, and then confirm the SDO transmission.

By read access, the object provides information about the module's saving capabilities.

## Object Description

| Index | 1010 h |
| :--- | :--- |
| Name | Store Parameters |
| Object Type | ARRAY |
| Data Type | UNSIGNED32 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Largest subindex supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Subindex | 1h |
| :--- | :--- |
| Description | Save all parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0x65766173 (write access) <br> (read access) |
| Default Value | 1h (saves parameters on command) |


| Subindex | 2 h |
| :--- | :--- |
| Description | Save communication parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0x65766173 (write access) <br> 1h $\quad$ (read access) |
| Default Value | 1h (saves parameters on command) |


| Subindex | 3h |
| :--- | :--- |
| Description | Save application parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0x65766173 (write access) <br> (read access) |
| Default Value | 1h (saves parameters on command) |


| Subindex | 4h |
| :--- | :--- |
| Description | Save manufacturer parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0 \times 65766173$ (write access) <br> (read access) |
| Default Value | 1h (saves parameters on command) |

### 3.1.6. Object 1011h: Restore Default Parameters

This object supports the restoring of the default values for the object dictionary in non-volatile memory. In order to avoid restoring of parameters by mistake, the device restores the defaults only when a specific signature is written to the appropriate subindex. The signature is "load".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

| d | a | LSB |  |
| :---: | :---: | :---: | :---: |
| 64 h | 61 h | 6 Fh | 6 Ch |

On reception of the correct signature to an appropriate subindex, the 18 Digital Inputs will restore the defaults in non-volatile memory, and then confirm the SDO transmission. The default values are set valid after the device is reset or power-cycled.

By read access, the object provides information about the module's default parameter restoring capabilities.

Object Description

| Index | 1011 h |
| :--- | :--- |
| Name | Restore Default Parameters |
| Object Type | ARRAY |
| Data Type | UNSIGNED32 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Largest subindex supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Subindex | 1 h |
| :--- | :--- |
| Description | Restore all default parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0x64616F6C (write access) <br> (read access) |
| Default Value | 1h (restores defaults on command) |


| Subindex | 2 h |
| :--- | :--- |
| Description | Restore default communication parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0 \times 64616 \mathrm{~F} 6 \mathrm{C}$ (write access) <br> (read access) <br> 1 h |
| Default Value | 1h (restores defaults on command) |


| Subindex | 3h |
| :--- | :--- |
| Description | Restore default application parameters |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0x64616F6C (write access) <br> 1h $\quad$ (read access) |
| Default Value | 1h (restores defaults on command) |


| Subindex | 4 h |
| :--- | :--- |


| Description | Restore default manufacturer parameters |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0 \times 64616 \mathrm{F6C}$ <br> (write access) <br> (read access) |
| Default Value | 1h (restores defaults on command) |

### 3.1.7. Object 1016h: Consumer Heartbeat Time

The 18 Digital Inputs can be a consumer of heartbeat objects for up to four modules. This object defines the expected heartbeat cycle time for those modules, and if set to zero, it is not used. When value is non-zero, the time is a multiple of 1 ms , and monitoring will start after the reception of the first heartbeat from the module. If the 18 Digital Inputs fails to receive a heartbeat from a node in the expected timeframe, it will indicate a communication error, and respond as per object 1029h.

| Bits | 31-24 | 23-16 | 15-0 |
| :---: | :---: | :---: | :---: |
| Value | Reserved 00h | Node-ID | Heartbeat time |
| Encoded as |  | UNSIGNED8 | UNSIGNED16 |

## Object Description

| Index | 1016 h |
| :--- | :--- |
| Name | Consumer heartbeat time |
| Object Type | ARRAY |
| Data Type | UNSIGNED32 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Subindex | 1h to 4h |
| :--- | :--- |
| Description | Consumer heartbeat time |
| Access | RW |
| PDO Mapping | No |
| Value Range | UNSIGNED32 |
| Default Value | 0 |

### 3.1.8. Object 1017h: Producer Heartbeat Time

The 18 Digital Inputs Controller could be configured to produce a cyclical heartbeat by writing a non-zero value to this object. The value will be given in multiples of 1 ms , and a value of 0 shall disable the heartbeat.

Object Description

| Index | 1017 h |
| :--- | :--- |
| Name | Producer heartbeat time |
| Object Type | VAR |
| Data Type | UNSIGNED16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | 10 to 65535 |
| Default Value | 0 |

### 3.1.9. Object 1018h: Identity Object

The identity object indicates the data of the 10 Universal Signal Inputs, including vendor id, device id, software and hardware version numbers, and the serial number.

In the Revision Number entry at subindex 3, the format of the data is as shown below

| MSB | Byte 2 | Byte 1 | Byte 0 |
| :---: | :---: | :---: | :---: |
| 0 | Major revision number (object dictionary) | Hardware Revision | Software Revision |

## Object Description

| Index | 1018 h |
| :--- | :--- |
| Name | Identity |
| Object Type | RECORD |
| Data Type | Identity Record |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Subindex | 1 h |
| :--- | :--- |
| Description | Vendor ID |
| Access | RO |
| PDO Mapping | No |
| Value Range | $0 \times 00000055$ |
| Default Value | $0 \times 00000055$ (Axiomatic) |


| Subindex | 2 h |
| :--- | :--- |
| Description | Product Code |
| Access | RO |
| PDO Mapping | No |
| Value Range | 0xAA020502 |
| Default Value | 0xAA020502 |


| Subindex | 3h |
| :--- | :--- |
| Description | Revision Number |
| Access | RO |
| PDO Mapping | No |
| Value Range | UNSIGNED32 |
| Default Value | No |


| Subindex | 4h |
| :--- | :--- |
| Description | Serial Number |
| Access | RO |
| PDO Mapping | No |
| Value Range | UNSIGNED32 |
| Default Value | No |

### 3.1.10. Object 1029h: Error Behaviour

This object controls the state that the 18 Digital Inputs will be set into in case of an error of the type associated with the subindex. The behaviour of the 18 Digital Inputs in each state is described in more detail in section 3.5.

## Object Description

| Index | 1029h |
| :--- | :--- |
| Name | Error Behaviour |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Subindex | 1 h |
| :--- | :--- |
| Description | Communication Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br>  <br>  <br>  <br>  <br>  <br> $2=$ No Stapped Change <br> Default Value 0 (Pre-Operational) |


| Subindex | 2 h |
| :--- | :--- |
| Description | Digital Input Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br> $1=$ No State Change <br> $2=$ Stopped |
| Default Value | 1 (no state change) |


| Subindex | 3h |
| :--- | :--- |
| Description | Analog Input Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br> $1=$ No State Change <br> $2=$ Stopped |
| Default Value | 1 (no state change) |


| Subindex | 4h |
| :--- | :--- |
| Description | Digital Output Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br>  <br>  <br>  <br>  <br>  <br> $2=$ No Stapped Change <br> Default Value 1 (no state change) |


| Subindex | 5 h |
| :--- | :--- |
| Description | Analog Output Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br> $1=$ No State Change <br> $2=$ Stopped |
| Default Value | 1 (no state change) |


| Subindex | 6 h |
| :--- | :--- |
| Description | Fault Detection Error |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0=$ Pre-Operational <br>  <br>  <br>  <br>  <br>  <br> $2=$ No Stapped Change <br> Default Value (no state change) |

[^0]
### 3.2. APPLICATION OBJECTS (DS-404)

| Index <br> (hex) | Object | Object <br> Type | Data Type | Access | PDO <br> Mapping |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 6000 | DI Read State 8 Input Lines | ARRAY | BOOLEAN | RO | Yes |
| 6002 | DI Polarity 8 Input Lines | ARRAY | UNSIGNED8 | RW | No |
| 7100 | DI Input Field Value | ARRAY | INTEGER16 | RO | Yes |
| 6110 | DI Sensor Type | ARRAY | UNSIGNED16 | RW | No |
| 6112 | DI Operating Mode | ARRAY | UNSIGNED8 | RW | No |
| 7120 | DI Input Scaling 1 FV | ARRAY | INTEGER16 | RW | No |
| 7121 | DI Input Scaling 1 PV | ARRAY | INTEGER16 | RW | No |
| 7122 | DI Input Scaling 2 FV | ARRAY | INTEGER16 | RW | No |
| 7123 | DI Input Scaling 2 PV | ARRAY | INTEGER16 | RW | No |
| 7130 | DI Input Process Value | ARRAY | INTEGER16 | RO | Yes |
| 6132 | DI Decimal Digits PV | ARRAY | UNSIGNED8 | RW | No |
| 7148 | DI Input Span Start | ARRAY | INTEGER16 | RW | No |
| 7149 | DI Input Span End | ARRAY | INTEGER16 | RW | No |
| 7124 | DI Input Offset | ARRAY | INTEGER16 | RW | No |
| 6125 | DI Autozero | ARRAY | UNSIGNED32 | WO | No |
| 61 A0 | DI Filter Type | ARRAY | UNSIGNED8 | RW | No |
| 61 A1 | DI Filter Constant | ARRAY | UNSIGNED16 | RW | No |

### 3.2.1. Object 6000h: DI Read State 8 Input Lines

This read-only object shall read group of 8 input lines as 8 -bit information. Refer to Section 2.2 for more information

Object Description

| Index | 6000h |
| :--- | :--- |
| Name | DI Read State 8 Input Line |
| Object Type | ARRAY |
| Data Type | BOOLEAN |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 3 |
| Default Value | 3 |


| Sub-Index | 1h |
| :--- | :--- |
| Description | Digital Input State Bitmap D1-D8 |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 0 (OFF) or 1 (ON) |
| Default Value | 0 |


| Sub-Index | 2h |
| :--- | :--- |
| Description | Digital Input State Bitmap D9-D16 |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | $0($ OFF ) or 1 (ON) |
| Default Value | 0 |


| Sub-Index | 3h |
| :--- | :--- |
| Description | Digital Input State Bitmap D17-D18 |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | $0($ OFF) or 1 (ON) |
| Default Value | 0 |

### 3.2.2. Object 6002h: DI Polarity 8 Input Lines

This object shall define the polarity of a group of 8 input lines. This object determines how the state read on the input pin corresponds to the logic state, in conjunction with manufacturer object 2020h, as defined in Table 3.

## Object Description

| Index | 6002 h |
| :--- | :--- |
| Name | DI Polarity 1 Input Line |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 2 |
| Default Value | 2 |


| Sub-Index | 1h |
| :--- | :--- |
| Description | Digital Input Polarity Bitmap D1-D8 |
| Access | RW |
| Section PDO <br> Mapping | No |
| Value Range | See Table 3 |
| Default Value | 0 (Normal On/Off) |


| Sub-Index | 2h |
| :--- | :--- |
| Description | Digital Input Polarity Bitmap D9-D16 |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 3 |
| Default Value | 0 (Normal On/Off) |


| Sub-Index | 3h |
| :--- | :--- |
| Description | Digital Input Polarity Bitmap D17-D18 |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 3 |
| Default Value | 0 (Normal On/Off) |

### 3.2.3. Object 7100h: DI Input Field Value

This object represents the measured value of an analog input that has been scaled as per manufacturer object 2102h DI Decimal Digits PV. The base unit for each type of input is defined in Table 8, as well as the read-only resolution (decimal digits) associated with the FV.

## Object Description

| Index | 7100h |
| :--- | :--- |
| Name | DI Input Field Value |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Analog Input X FV |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | Data Type Specific, see Table 10 |
| Default Value | No |

### 3.2.4. Object 6110h: DI Sensor Type

This object defines the type of sensor (input) which is connected to the analog input pin.
Object Description

| Index | 6110h |
| :--- | :--- |
| Name | DI Sensor Type |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Dlx Sensor Type |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 5 |
| Default Value | 1000 (PWM) |

### 3.2.5. Object 6112h: DI Operating Mode

This object enables special operating modes for the input.
Object Description

| Index | 6112 h |
| :--- | :--- |
| Name | DI Operating Mode |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 18 |
| Default Value | 18 |


| Sub-Index | 1h to $12 \mathrm{~h}(x=1$ to 18$)$ |
| :--- | :--- |
| Description | Dlx Operating Mode |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 4 |
| Default Value | 10 (Digital Input (On/Off)) |

### 3.2.6. Object 7120h: DI Input Scaling 1 FV

This object describes the field value of the first calibration point for the analog input channel, as shown in Figure 7. It also defines the "minimum" value of the analog input range when using this input as a control source for another function block, as described in Table 13 in Section 2.4. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

| Index | 7120h |
| :--- | :--- |
| Name | DI Input Scaling 1 FV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10) |
| :--- | :--- |
| Description | Dlx Scaling 1 FV |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 10 |
| Default Value | $500[\mathrm{mV}]$ |

### 3.2.7. Object 7121h: DI Input Scaling 1 PV

This object defines the process value of the first calibration point for the analog input channel, as shown in Figure 7. It is scaled in the physical unit of the PV, i.e. object 6132 h applies to this object.

Object Description

| Index | 7121h |
| :--- | :--- |
| Name | DI Input Scaling 1 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ or 10) |
| :--- | :--- |
| Description | Dlx Scaling 1 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | Integer16 |
| Default Value | 500 [same as 7120 h$]$ |

### 3.2.8. Object 7122h: DI Input Scaling 2 FV

This object describes the field value of the second calibration point for the analog input channel, as shown in Figure 7. It also defines the "maximum" value of the analog input range when using this input as a control source for another function block, as described in Table 13 in Section 2.4. It is scaled in the physical unit of the FV, i.e. object 2102 h applies to this object.

Object Description

| Index | 7122h |
| :--- | :--- |
| Name | DI Input Scaling 2 FV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ or 10) |
| :--- | :--- |
| Description | DIx Scaling 2 FV |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 13 |
| Default Value | $4500[\mathrm{mV}]$ |

### 3.2.9. Object 7123h: DI Input Scaling 2 PV

This object defines the process value of the second calibration point for the analog input channel, as shown in Figure 7. It is scaled in the physical unit of the PV, i.e. object 6132h applies to this object.

Object Description

| Index | 7123h |
| :--- | :--- |
| Name | DI Input Scaling 2 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10) |
| :--- | :--- |
| Description | DIx Scaling 2 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | Integer16 |
| Default Value | 4500 [same as 7122 h$]$ |

### 3.2.10. Object 7130h: DI Input Process Value

This object represents the result of the input scaling applied per Figure 7, and gives the measured quantity scaled in the physical unit of the process value (i.e. ${ }^{\circ} \mathrm{C}, \mathrm{PSI}, \mathrm{RPM}$, etc) with the resolution defined in object 6132h DI Decimal Digits PV.

Object Description

| Index | 7130h |
| :--- | :--- |
| Name | DI Input Process Value |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Dlx Process Value |
| Access | RO |


| PDO Mapping | Yes |
| :--- | :--- |
| Value Range | Integer16 |
| Default Value | No |

### 3.2.11. Object 6132h: DI Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the process value object.

Example: A process value of 1.230 (Float) will be coded as 1230 in Integer16 format if the number of decimal digits is set to 3 .

## Object Description

| Index | 6123 h |
| :--- | :--- |
| Name | DI Decimal Digits PV |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to $\mathrm{Ah}(\mathrm{x}=1$ to 10$)$ |
| :--- | :--- |
| Description | DIx Decimal Digits PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 |
| Default Value | 3 [Volt to mV$]$ |

### 3.2.12. Object 7148h: DI Span Start

This value specifies the lower limit where field values are expected. Field values which are lower than this limit are marked as negative overload. It is scaled in the physical unit of the FV, i.e. object 2102h applies to this object.

Object Description

| Index | 7148h |
| :--- | :--- |
| Name | DI Span Start |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |


| Access | RO |
| :--- | :--- |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1 h to Ah (x = 1 to 10) |
| :--- | :--- |
| Description | DIx Span Start (Error Min) |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 10 |
| Default Value | $200[\mathrm{mV}]$ |

### 3.2.13. Object 7149h: DI Span End

This value specifies the upper limit where field values are expected. Field values which are higher than this limit are marked as positive overload. It is scaled in the physical unit of the FV, i.e. object 2102h applies to this object.

Object Description

| Index | 7149h |
| :--- | :--- |
| Name | DI Span End |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah (x=1 to 10) |
| :--- | :--- |
| Description | Dlx Span End (Error Max) |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 10 |
| Default Value | $4800[\mathrm{mV}]$ |

### 3.2.14. Object 7124: DI Input Offset

This object defines an offset for the input channel, which added to the input value after scaling the input field value to process value. The value is scaled in the physical unit of the input process value, object 7130 h .

Object Description

| Index | 7124h |
| :--- | :--- |
| Name | DI Input Offset |


| Object Type | ARRAY |
| :--- | :--- |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | DIx Input Offset |
| Access | RW |
| PDO Mapping | No |
| Value Range | INTEGER16 |
| Default Value | 0 |

### 3.2.15. Object 6125: DI Autozero

Writing a signature 'zero' to this object causes a modification of object 7124h value, DI Input Offset, such that object 7130h (DI Input PV) becomes zero. This zeroing cycling is performed once, upon reception of the signature to the appropriate subindex, but the zeroing procedure can be performed at any time, as many times as required.

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

| 0 | $r$ | $e$ | $z$ |
| :---: | :---: | :---: | :---: |
| $6 F h$ | $72 h$ | $65 h$ | $7 A h$ |

Upon reception of the correct signature to an appropriate subindex, the 10 Univerasl Signal Inputs will perform the zeroing operation for that input, and then confirm the SDO transmission.

Object Description

| Index | 6125 h |
| :--- | :--- |
| Name | DI Autozero |
| Object Type | ARRAY |
| Data Type | UNSIGNED32 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | DIx Autozero |
| Access | WO |
| PDO Mapping | No |
| Value Range | $0 \times 6 F 72657 \mathrm{~A}$ |
| Default Value | No |

### 3.2.16. Object 61A0h: DI Filter Type

This object defines the type of data filter that will be applied to the raw input data, as read from the ADC or Timer, before it is passed to the field value object. The types of data filters are defined in Table 7, and how they are used is outlined in Section 2.3.

## Object Description

| Index | 61A0h |
| :--- | :--- |
| Name | DI Filter Type |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 18 |
| Default Value | 18 |


| Sub-Index | 1h to 12h $(x=1$ to 18$)$ |
| :--- | :--- |
| Description | Dlx Filter Type |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 7 |
| Default Value | 0 (no filter) |

### 3.2.17. Object 61A1h: DI Filter Constant

This object defines the number of steps used in the various filters, as defined in Section 2.3
Object Description

| Index | 61AOh |
| :--- | :--- |
| Name | DI Filter Constant |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |


| Access | RO |
| :--- | :--- |
| PDO Mapping | No |
| Value Range | 18 |
| Default Value | 18 |


| Sub-Index | 1h to $12 \mathrm{~h}(\mathrm{x}=1$ to 10$)$ |
| :--- | :--- |
| Description | Dlx Filter Constant |
| Access | RW |
| PDO Mapping | No |
| Value Range | 1 to 1000 |
| Default Value | 10 |

### 3.3. MANUFACTURER OBJECTS

| Index <br> (hex) | Object | Object <br> Type | Data Type | Access | PDO <br> Mapping |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 2020 | DI Pull Up/Down Mode 1 Input Line | ARRAY | UNSIGNED8 | RW | No |
| 2030 | DI Debounce Filter 1 Input Line | ARRAY | UNSIGNED8 | RW | No |
| 2100 | DI Input Range | ARRAY | UNSIGNED8 | RW | No |
| 2101 | DI Number of Pulses Per Revolution | ARRAY | UNSIGNED16 | RW | No |
| 2102 | DI Decimal Digits FV | ARRAY | UNSIGNED8 | RW | No |
| 2110 | DI Error Detect Enable | ARRAY | BOOLEAN | RW | No |
| 2111 | DI Error Clear Hysteresis | ARRAY | INTEGER16 | RW | No |
| 2112 | DI Error Reaction Delay | ARRAY | UNSIGNED16 | RW | No |
| 2120 | DI Third-Order Filter Power | ARRAY | UNSIGNED16 | RW | No |
| 2121 | DI Third-Order Filter Input Coefficient N0 | ARRAY | INTEGER16 | RW | No |
| 2122 | DI Third-Order Filter Input Coefficient N1 | ARRAY | INTEGER16 | RW | No |
| 2123 | DI Third-Order Filter Input Coefficient N2 | ARRAY | INTEGER16 | RW | No |
| 2124 | DI Third-Order Filter Input Coefficient N3 | ARRAY | INTEGER16 | RW | No |
| 2125 | DI Third-Order Filter Output Coefficient N1 | ARRAY | INTEGER16 | RW | No |
| 2126 | DI Third-Order Filter Output Coefficient N2 | ARRAY | INTEGER16 | RW | No |
| 2127 | DI Third-Order Filter Output Coefficient N3 | ARRAY | INTEGER16 | RW | No |
| 2500 | EC Extra Received Process Value | ARRAY | INTEGER16 | RW | Yes |
| 2502 | EC Decimal Digits PV | ARRAY | UNSIGNED8 | RW | No |
| 2520 | EC Scaling 1 PV | ARRAY | INTEGER16 | RW | No |
| 2522 | EC Scaling 2 PV | ARRAY | INTEGER16 | RW | No |
| $3 y z 0 ~$ | LTyz Input X-Axis Source | VAR | UNSIGNED8 | RW | No |
| $3 y z 1 ~$ | LTyz Input X-Axis Number | VAR | UNSIGNED8 | RW | No |
| $3 y z 2 ~$ | LTyz Auto Repeat | VAR | UNSIGNED8 | RW | No |
| $3 y z 3 ~$ | LTyz X-Axis Decimal Digits PV | VAR | UNSIGNED8 | RW | No |
| $3 y z 4 ~$ | LTyz Y-Axis Decimal Digits PV | VAR | UNSIGNED8 | RW | No |
| $3 y z 5 ~$ | LTyz Point Response | ARRAY | UNSIGNED8 | RW | No |
| $3 y z 6 ~$ | LTyz Point X-Axis PV | ARRAY | INTEGER32 | RW | No |
| $3 y z 7 ~$ | LTyz Point Y-Axis PV | ARRAY | INTEGER16 | RW | No |


| $3 y z 8$ | LTyz Output Y-Axis PV | VAR | INTEGER16 | RO | Yes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3300 | Logic Block Enable | ARRAY | BOOLEAN | RW | No |
| 3310 | Logic Block Selected Table | ARRAY | UNSIGNED8 | RO | Yes |
| 3320 | Logic Output Process Value | ARRAY | INTEGER16 | RO | Yes |
| $3 \times 01$ | LB(3-x) Lookup Table Number | ARRAY | UNSIGNED8 | RW | No |
| $3 \times 02$ | LB(3-x) Function Logical Operator | ARRAY | UNSIGNED8 | RW | No |
| $3 \times 11$ | LB(3-x) Function A Condition 1 | RECORD | UNSIGNED8 | RW | No |
| 3x12 | LB(3-x) Function A Condition 2 | RECORD | UNSIGNED8 | RW | No |
| 3x13 | LB(3-x) Function A Condition 3 | RECORD | UNSIGNED8 | RW | No |
| $3 \times 21$ | LB(3-x) Function B Condition 1 | RECORD | UNSIGNED8 | RW | No |
| 3x22 | LB(3-x) Function B Condition 2 | RECORD | UNSIGNED8 | RW | No |
| 3x23 | LB(3-x) Function B Condition 3 | RECORD | UNSIGNED8 | RW | No |
| $3 \times 31$ | LB(3-x) Function C Condition 1 | RECORD | UNSIGNED8 | RW | No |
| 3x32 | LB(3-x) Function C Condition 2 | RECORD | UNSIGNED8 | RW | No |
| 3x33 | LB(3-x) Function C Condition 3 | RECORD | UNSIGNED8 | RW | No |
| 4500 | Math Block Enable | ARRAY | BOOLEAN | RW | No |
| 4521 | Math Output Scaling 1 PV | ARRAY | INTEGER16 | RW | No |
| 4523 | Math Output Scaling 2 PV | ARRAY | INTEGER16 | RW | No |
| 4530 | Math Output Process Value | ARRAY | INTEGER16 | RO | Yes |
| 4532 | Math Output Decimal Digits PV | ARRAY | UNSIGNED8 | RW | No |
| 4 y 00 | Math Y Input Source | ARRAY | UNSIGNED8 | RW | No |
| 4 y 01 | Math Y Input Number | ARRAY | UNSIGNED8 | RW | No |
| 4 y 02 | Math Y Function Number | ARRAY | UNSIGNED8 | RW | No |
| 4 y 03 | Math Y Input Decimal Digits FV | ARRAY | UNSIGNED8 | RW | No |
| 4y20 | Math Y Input Scaling 1 FV | ARRAY | INTEGER16 | RW | No |
| 4 y 22 | Math Y Input Scaling 2 FV | ARRAY | INTEGER16 | RW | No |
| 4y40 | Math Y Input Gain | ARRAY | INTEGER8 | RW | No |
| 4 y 50 | Math Y Operator | ARRAY | UNSIGNED8 | RW | No |
| 5010 | Constant Field Value | ARRAY | FLOAT32 | RW | No |
| 5040 | Fault Detection Field Value | ARRAY | UNSIGNED16 | RO | Yes |
| 5041 | Fault Detection Set Threshold | ARRAY | UNSIGNED16 | RW | No |
| 5042 | Fault Detection Clear Threshold | ARRAY | UNSIGNED16 | RW | No |
| 5050 | Fault Detection Enable Err Check 8 Faults | ARRAY | UNSIGNED8 | RW | No |
| 5041 | Fault Detection Error Response Delay | ARRAY | UNSIGNED16 | RW | No |
| 5555 | Start in Operational Mode | VAR | BOOLEAN | RW | No |

Where $\boldsymbol{y z}=01$ to 09 (LUT 1 to 09) and $\boldsymbol{x}=4$ to 5(Logic 1 to 2) and $\boldsymbol{y}=1$ to 6 (Math 1 to 6)

### 3.3.1. Object 2020h: DI Pullup/Down Mode 1 Input Line

This object determines how the state read on the input pin corresponds to the logic state, in conjunction with application object 6020h, as defined in Table 3. The options for this object are listed in Table 1, and the controller will adjust the input hardware according to what is specified.

## Object Description

| Index | 2020 h |
| :--- | :--- |
| Name | DI Pullup/Down Mode 1 Input Line |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah (x = 1 or 10) |
| :--- | :--- |
| Description | Digital Input X Pullup/Down |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 1 |
| Default Value | 0 (pullup/down disabled) |

### 3.3.2. Object 2030h: DI Debounce Filter 1 Input Line

This object will debounce the input signal applied on a single digital input as shown in Figure 4. The options for this object are listed in Table 2.

Object Description

| Index | 2020h |
| :--- | :--- |
| Name | DI Debounce Filter 1 Input Line |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Digital Input X Debounce Filter |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 2 |
| Default Value | 2 [Filter 1.78 us] |

### 3.3.3. Object 2100h: DI Input Range

This object, in conjunction with 6110h DI Sensor Type, defines the analog input defaults (Table 5) and allowable ranges (Table 6) for objects $2111 \mathrm{~h}, 7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}$ and 7149 h . The number and types of ranges will vary according to what type of sensor is connected to the input, as described in Table 9.

Object Description

| Index | $2100 h$ |
| :--- | :--- |
| Name | DI Input Range |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Input X Range |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 6 |
| Default Value | 0 [Low Frequency PWM] |

### 3.3.4. Object 2101h: DI Number of Pulses Per Revolution

This object is only used when a "Frequency" input type has been selected by object 6110 h . The controller will automatically convert frequency measurement from Hz to RPM when a non-zero value is specified. In this case, objects $2111 \mathrm{~h}, 7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}$ and 7149 h will be interpreted as RPM data. Object 2100h DI Input Range must still be specified in Hertz, and should be selected according to the expected frequencies that the RPM sensor will operate in.

Object Description

| Index | 2101h |
| :--- | :--- |
| Name | DI Number of Pulses Per Revolution |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10) |
| :--- | :--- |
| Description | Input $x$ Pulses per Revolution |
| Access | RW |
| PDO Mapping | No |


| Value Range | 0 to 1000 |
| :--- | :--- |
| Default Value | 1 |

### 3.3.5. Object 2102h: DI Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the field value object.

Example: A field value of 1.230 (Float) will be coded as 1230 in Integer16 format if the number of decimal digits is set to 3 .

In addition to the FV object 7100 h , objects $2111 \mathrm{~h}, 7120 \mathrm{~h}, 7122 \mathrm{~h}, 7148 \mathrm{~h}$ and 7149 h will also be specified with this resolution. This object is normally read-only, and will be automatically adjusted by the controller as per Table 8 depending on the analog input type and range that has been selected. When object 5550h is set to FALSE (disables automatic updates), this object becomes writeable.

## Object Description

| Index | 2102h |
| :--- | :--- |
| Name | DI Decimal Digits FV |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1 h to Ah (x=1 to 10) |
| :--- | :--- |
| Description | Inputx Decimal Digits FV |
| Access | RW (only when object 5550h is false) |
| PDO Mapping | No |
| Value Range | See Table 8 |
| Default Value | 3 [Volt to mV ] |

### 3.3.6. Object 2110h: DI Error Detect Enable

This object enables error detection and reaction associated with the analog input function block. When disabled, the input will not generate an EMCY code in object 1003h Pre-Defined Error Field, nor will it disable any output controlled by the input should the input go out of range as defined by the objects 7148h DI Span Start and 7149h DI Span End.

Object Description

| Index | $2110 h$ |
| :--- | :--- |
| Name | DI Error Detect Enable |
| Object Type | ARRAY |
| Data Type | BOOLEAN |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Inputx Error Detect Enable |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 (FALSE) or 1 (TRUE) |
| Default Value | 1 [TRUE] |

### 3.3.7. Object 2111h: DI Error Clear Hysteresis

This object is used to prevent rapid activation/clearing of an input fault flag, and sending of object 1003 h to the CANopen ${ }^{\circledR}$ network. Once the input has gone above/below the thresholds that define the valid operating range, it must come back into range minus/plus this value to clear the fault. It is scaled in the physical unit of the FV, i.e. object 2102h applies to this object.

Object Description

| Index | 2111h |
| :--- | :--- |
| Name | DI Error Clear Hysteresis |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10) |
| :--- | :--- |
| Description | Inputx Error Clear Hysteresis |
| Access | RW |
| PDO Mapping | No |


| Value Range | See Table 10 |
| :--- | :--- |
| Default Value | $100[\mathrm{mV}]$ |

### 3.3.8. Object 2112h: DI Error Reaction Delay

This object is used to filter out spurious signals and to prevent saturating the CANopen® network with broadcasts of object 1003h as the fault is set/cleared. Before the fault is recognized (i.e. the EMCY code is added to the pre-defined error field list), it must remain active throughout the period of time defined in this object. The physical unit for this object is milliseconds.

Object Description

| Index | 2112 h |
| :--- | :--- |
| Name | DI Error Reaction Delay |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 10 |
| Default Value | 10 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | Dlx Error Reaction Delay |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 60,000 |
| Default Value | $1000[\mathrm{~ms}]$ |

### 3.3.9. Object 2120h: DI Third-Order Filter Power

Third order filtering of the input data is done using 16-bit fixed point math. This object tells the controller the shift value (i.e. $2^{\mathrm{x}}$ ) that was used when the coefficients were selected. See Section 2.3 for more information on the third-order low pass filter.

Object Description

| Index | $2120 h$ |
| :--- | :--- |
| Name | DI Third-Order Filter Power |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |


| Value Range | 18 |
| :--- | :--- |
| Default Value | 18 |


| Sub-Index | 1h to $12 \mathrm{~h}(\mathrm{x}=1$ to 18$)$ |
| :--- | :--- |
| Description | Inputx Third-Order Filter Power |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 16 |
| Default Value | $10\left[2^{10}=1024\right]$ |

3.3.10. Object 2121h: DI Third-Order Filter Input Coefficient N0
3.3.11. Object 2122h: DI Third-Order Filter Input Coefficient N1
3.3.12. Object 2123h: DI Third-Order Filter Input Coefficient N2
3.3.13. Object 2124h: DI Third-Order Filter Input Coefficient N3

These objects specify the 16 -bit shifted input co-efficient values used in the third-order low pass filter calculation described in Section 2.3. They are all defined with a right shift value of $2^{10}$. Since coefficient N3 is set to zero, the default filter is a second-order low pass.

Object Description

| Index | 2121 h to $2124 \mathrm{~h}(\mathrm{x}=0$ to 3) |
| :--- | :--- |
| Name | DI 3 ${ }^{\text {rd }}$ Order Filter Input Coefficient Nx |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 18 |
| Default Value | 18 |


| Sub-Index | 1 h to $12 \mathrm{~h}(\mathrm{y}=1$ to 18$)$ |
| :--- | :--- |
| Description | Aly $3^{\text {rd }}$ Order Filter Input Coeff Nx |
| Access | RW |
| PDO Mapping | No |
| Value Range | -10000 to 10000 |
| Default Value | $\mathrm{N} 0=120, \mathrm{~N} 1=241, \mathrm{~N} 2=120, \mathrm{~N} 3=0$ |

3.3.14. Object 2125h: DI Third-Order Filter Output Coefficient N1
3.3.15. Object 2126h: DI Third-Order Filter Output Coefficient N2
3.3.16. Object 2127h: DI Third-Order Filter Output Coefficient N3

These objects specify the 16-bit shifted output co-efficient values used in the third-order low pass filter calculation described in Section 2.3. They are all defined with a right shift value of $2^{10}$. Since coefficient N3 is set to zero, the default filter is a second-order low pass.

Object Description

| Index | 2125 h to 2127h (x = 1 to 3) |
| :--- | :--- |
| Name | DI 3rd Order Filter Output Coefficient <br> Nx |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 18 |
| Default Value | 18 |


| Sub-Index | 1h to 12h (y =1 to 18) |
| :--- | :--- |
| Description | Aly 3 ${ }^{\text {rd }}$ Order Filter Output Coeff Nx |
| Access | RW |
| PDO Mapping | No |
| Value Range | -10000 to 10000 |
| Default Value | N1 $=704$, N2=-164, N3=0 |

### 3.3.17. Object 2500h: EC Extra Received Process Value

This object provides an extra control source in order to allow other function blocks to be controlled by data received from a CANopen® RPDO. It functions similarly to any other writeable, mappable PV object, such as 7300h AO Output PV.

## Object Description

| Index | 2500 h |
| :--- | :--- |
| Name | EC Extra Received Process Value |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 12 |
| Default Value | 12 |


| Sub-Index | 1h to $\mathrm{Ch}(\mathrm{x}=1$ to 12$)$ |
| :--- | :--- |
| Description | ECx Received Process Value |
| Access | RW |
| PDO Mapping | Yes |
| Value Range | Integer16 |
| Default Value | No |

### 3.3.18. Object 2502h: EC Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the extra control data, which is interpreted with data type Integer16 in the process value object.

Object Description

| Index | 2502 h |
| :--- | :--- |
| Name | EC Decimal Digits PV |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 12 |
| Default Value | 12 |


| Sub-Index | 1h to Ch $(x=1$ to 12$)$ |
| :--- | :--- |
| Description | ECx Decimal Digits PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 |
| Default Value | $1(0.1$ resolution $)$ |

### 3.3.19. Object 2520h: EC Scaling 1 PV

This object defines the minimum value of the extra control source. It used as the Scaling 1 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 7. There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502h, EC Decimal Digits PV. This object must always be smaller than object 2522h EC Scaling 2 PV.

Object Description

| Index | 2520 h |
| :--- | :--- |
| Name | EC Scaling 1 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 12 |
| Default Value | 12 |


| Sub-Index | 1h to Ch (x=1 to 12) |
| :--- | :--- |
| Description | ECx Scaling 1 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | -32768 to 2522 h sub-index X |
| Default Value | 0 |

### 3.3.20. Object 2522h: EC Scaling 2 PV

This object defines the maximum value of the extra control source. It used as the Scaling 2 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 7. There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502h, EC Decimal Digits PV. This object must always be larger than object 2520 h EC Scaling 1 PV.

Object Description

| Index | 2522h |
| :--- | :--- |
| Name | EC Scaling 2 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 12 |
| Default Value | 12 |


| Sub-Index | 1h to Ch $(x=1$ to 12$)$ |
| :--- | :--- |
| Description | ECx Scaling 2 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | 2520 h sub-index X to 32767 |
| Default Value | $1000(100.0)$ |

### 3.3.21. Object 3yzOh: LTyz Input X-Axis Source

This object defines the type of input that will be used to determine the X-Axis input process value for the lookup table function. The available control sources on the 18 Digital Inputs are listed in Table 14. Not all sources would make sense to use as an X-Axis input, and it is the user's responsibility to select a source that makes sense for the application. A selection of "Control Source Not Used" disables the associated lookup table function block.

Object Description

| Index | 3yzOh (where yz = 01 to 09) |
| :--- | :--- |
| Name | LTyz Input X-Axis Source |
| Object Type | VARIABLE |


| Data Type | UNSIGNED8 |
| :--- | :--- |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 11 |
| Default Value | 0 (control not used) |

### 3.3.22. Object 3yz1h: LTyz Input X-Axis Number

This object defines the number of the source that will be used as the X-Axis input PV for the lookup table function. The available control numbers are dependent on the source selected, as shown in Table 12. Once selected, the limits for the points on the X-Axis will be constrained by the scaling objects of the control source/number as defined in Table 13.

## Object Description

| Index | 3yz1h (where yz $=01$ to 09 ) |
| :--- | :--- |
| Name | LTyz Input X-Axis Number |
| Object Type | VARIABLE- |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 12 |
| Default Value | 0 (null control source) |

### 3.3.23. Object 3yz2h: LTyz Auto Repeat

This object determines whether the lookup table sequence will repeat automatically once the last point in the lookup table has been completed. This object is only taken into effect when the response is set to 'Time Response'. For more details on the functionality of this object and its effect on the lookup table, please refer to section 2.5.4

## Object Description

| Index | 3yz2h (where yz = 01 to 09) |
| :--- | :--- |
| Name | LTyz X-Axis Decimal Digits PV |
| Object Type | VARIABLE |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | $0($ OFF ) to 1 (ON) |
| Default Value | 0 [OFF] |

### 3.3.24. Object 3yz3h: LTyz X-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the X -Axis input data and the points in the lookup table. It should be set equal to the decimal digits used by the PV from the control source/number as defined in Table 13.

## Object Description

| Index | 3yz3h (where yz = 01 to 09) |
| :--- | :--- |
| Name | LTyz X-Axis Decimal Digits PV |
| Object Type | VARIABLE |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 (see Table 13) |
| Default Value | 0 |

### 3.3.25. Object 3yz4h: LTyz Y-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the Y-Axis points in the lookup table. When the Y-Axis output is going to be the input to another function block (i.e. an analog output), it is recommended that this value be set equal to the decimal digits used by the block that is using the lookup table as the control source/number.

Object Description

| Index | 3yz4h (where yz = 01 to 09) |
| :--- | :--- |
| Name | LTyz Y-Axis Decimal Digits PV |
| Object Type | VARIABLE |
| Data Type | UNSIGNED8 |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 |
| Default Value | 0 |

### 3.3.26. Object 3yz5h: LTyz Point Response

This object determines the Y-Axis output response to changes in the X -Axis input. The value set in sub-index 1 determines the X-Axis type (i.e. data or time), while all other sub-indexes determine the response (ramp, step, ignore) between two points on the curve. The options for this object are listed in Table 14. See Figure 9 for an example of the difference between a step and ramp response.

## Object Description

| Index | 3yz5h (where yz = 01 to 12) |
| :--- | :--- |
| Name | LTyz Point Response |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 11 |
| Default Value | 11 |


| Sub-Index | 1h |
| :--- | :--- |
| Description | X-Axis Type |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 14 (0 or 1$)$ |
| Default Value | 0 (x-axis data response) |


| Sub-Index | 2h to $\mathrm{Bh}(\mathrm{x}=2$ to 11) |
| :--- | :--- |
| Description | LTyz Point X Response |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 14 (0, 1 or 2$)$ |
| Default Value | 1 (ramp to response) |

### 3.3.27. Object 3yz6h: LTyz Point X-Axis PV

This object defines the X-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes.

When a data response is selected for the X-Axis type (sub-index 1 of object 3yz5), this object is constrained such that X1 cannot be less than the Scaling 1 value of the selected control source/number, and X11 cannot be more than the Scaling 2 value. The rest of the points are constrained by the formula below. The physical unit associate with the data will be that of the selected input, and it will use the resolution defined in object 3yz3h, LTz X-Axis Decimal Digits PV.

$$
\text { Minlnt16 }<=X_{1}<=X_{2}<=X_{3}<=X_{4}<=X_{5}<=X_{6}<=X_{7}<=X_{8}<=X_{9}<=X_{10}<=X_{11}<=\text { MaxInt16 }
$$

When a time response has been selected, each point on the $X$-Axis can be set anywhere from 1 to 86,400,000ms.

## Object Description

| Index | 3yz6h (where yz = 01 to 12) |
| :--- | :--- |
| Name | LTyz Point X-Axis PV |
| Object Type | ARRAY |
| Data Type | INTEGER32 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 11 |
| Default Value | 11 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |  |
| :--- | :--- | :---: |
| Description | LTyz Point X-Axis PVx |  |
| Access | RW |  |
| PDO Mapping | No |  |
| Value Range | See above (data) |  |
| 1 to 86400000 (time) |  |  |
| Default Value | $10^{*}(x-1)$ |  |$\quad$ No $\quad$.

### 3.3.28. Object 3yz7h: LTyz Point Y-Axis PV

This object defines the Y-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes. The data is unconstrained and has no physical unit associate with it. It will use the resolution defined in object 3yz4h, LTyz Y-Axis Decimal Digits PV.

Object Description

| Index | 3yz7h (where yz = 01 to 12) |
| :--- | :--- |
| Name | LTz Point Y-Axis PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 11 |
| Default Value | 11 |


| Sub-Index | 1h to Ah $(x=1$ to 10$)$ |
| :--- | :--- |
| Description | LTyz Point Y-Axis PVx |
| Access | RW |
| PDO Mapping | No |
| Value Range | Integer16 |
| Default Value | $10^{*}(x-1)[$ i.e. $0,10,20,30, \ldots 100]$ |

### 3.3.29. Object 3yz8h: LTyz Output Y-Axis PV

This read-only object contains the lookup table function block PV that can be used as the input source for another function block (i.e. analog output.) The physical unit for this object is undefined, and it will use the resolution defined in object 3yz4h, LTz Y-Axis Decimal Digits PV.

Object Description

| Index | 3yz8h (where yz =01 to 09) |
| :--- | :--- |
| Name | LTyz Output Y-Axis PV |
| Object Type | VARIABLE |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | Integer16 |
| Default Value | No |

### 3.3.30. Object 3300h: Logic Block Enable

This object defines whether or not the logic shown in Figure 12 will be evaluated.
Object Description

| Index | 3300h |
| :--- | :--- |
| Name | Logic Block Enable |
| Object Type | ARRAY |
| Data Type | BOOLEAN |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Sub-Index | 1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$ |
| :--- | :--- |
| Description | LBx Enable |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 (FALSE) or 1 (TRUE) |
| Default Value | 0 [FALSE] |

### 3.3.31. Object 3310h: Logic Block Selected Table

This read-only object reflects what table has been selected as the output source for the logic block after the evaluation shown in Figure 12 has been performed.

Object Description

| Index | 3310h |
| :--- | :--- |
| Name | Logic Block Selected Table |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Sub-Index | 1h to $4 \mathrm{~h}(x=1$ to 4$)$ |
| :--- | :--- |
| Description | LBx Selected Table |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 1 to 12 |
| Default Value | No |

### 3.3.32. Object 3320h: Logic Block Output PV

This read-only object reflects the output from the selected table, interpreted as a percentage. The limits for the percentage conversion are based on the range of the lookup tables Y-Axis Output PV. This value has a fixed decimal digit value of 1 giving a resolution of $0.1 \%$.

Object Description

| Index | 3320 h |
| :--- | :--- |
| Name | Logic Block Output PV |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Sub-Index | 1h to 4h $(x=1$ to 4) |
| :--- | :--- |
| Description | LBx Output PV |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | Dependent on Selected Table |
| Default Value | No |

### 3.3.33. Object $3 x 01 h$ : LB(3-x) Lookup Table Numbers

This object determines which of the six lookup tables supports on the 10 Universal Inputs are associated with a particular function within the given logic block. Up to three tables can be linked to each logic function.

Object Description

| Index | $3 x 01 \mathrm{~h}$ (where $\mathrm{x}=4$ to 5) |
| :--- | :--- |
| Name | LB(3-x) Lookup Table Numbers |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |
| Default Value | 4 |


| Sub-Index | 1h to $4 \mathrm{~h}(\mathrm{y}=\mathrm{A}$ to C$)$ |
| :--- | :--- |
| Description | LB(3-x) Lookup Table Y Number |
| Access | RW |
| PDO Mapping | No |
| Value Range | 1 to 12 |
| Default Value | See Table 17 |

### 3.3.34. Object 3x02h: LB(3-x) Function Logical Operator

This object determines how the results of the three conditions for each function are to be compared to one another to determine the overall state of the function output. There are up to three functions that can be evaluated in each logic block. The options for this object are defined in Table 16. See Section 2.6 for more information about how this object is used.

## Object Description

| Index | $3 x 02 \mathrm{~h}$ (where $\mathrm{x}=4$ to 5 ) |
| :--- | :--- |
| Name | LB(3-x) Function Logical Operator |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 4 |


| Default Value | 4 |
| :--- | :--- |


| Sub-Index | 1h to 4h $(y=A$ to $C$ ) |
| :--- | :--- |
| Description | LB(3-x) Function Y Logical Operator |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 27 |
| Default Value | Function $A=1$ (and all) <br> Function $B=1$ (and all) <br> Function $C=0$ (default) |

3.3.35. Object $3 \times 11$ h: LB(3-x) Function $A$ Condition 1
3.3.36. Object $3 x 12 h$ : LB(3-x) Function A Condition 2
3.3.37. Object $3 x 13 h$ : LB(3-x) Function A Condition 3
3.3.38. Object $3 x 21$ h: LB(3-x) Function B Condition 1
3.3.39. Object $3 \times 22 h$ : LB(3-x) Function B Condition 2
3.3.40. Object $3 \times 23 h$ : LB(3-x) Function B Condition 3
3.3.41. Object $3 x 31$ h: LB(3-x) Function C Condition 1
3.3.42. Object 3x32h: LB(3-x) Function C Condition 2
3.3.43. Object 3x33h: LB(3-x) Function C Condition 3

These objects, 3xyzh, represent Logic Block z, Function y, Condition z, where $x=4$ to $7, y=1$ (A) to $3(C)$, and $z=1$ to 3 . All of these objects are a special type of record, defined in Table 15. Information on how to use these objects is defined in Section 2.6.

## Object Description

| Index | 3xyzh |
| :--- | :--- |
| Name | LB(3-x) Function y Condition z |
| Object Type | RECORD |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 5 |
| Default Value | 5 |


| Sub-Index | 1h |
| :--- | :--- |
| Description | Argument 1 Source |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 11 |
| Default Value | 1 (CANopen ${ }^{\circledR}$ Message) |


| Sub-Index | 2 h |
| :--- | :--- |


| Description | Argument 1 Number |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 12 |
| Default Value | 11 (EC Received PV 1) |


| Sub-Index | 3h |
| :--- | :--- |
| Description | Argument 2 Source |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 11 |
| Default Value | 5 (Constant PV) |


| Sub-Index | 4h |
| :--- | :--- |
| Description | Argument 2 Number |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 12 |
| Default Value | 3 (Constant FV 3) |


| Sub-Index | 5 h |
| :--- | :--- |
| Description | Operator |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 20 |
| Default Value | 0 (Equals) |

### 3.3.44. Object 4000h: Math Function Enable

The corresponding sub-index of object must be set TRUE in order for a math function block to be enabled. Otherwise, the output will always be at 0 .

## Object Description

| Index | 4000h |
| :--- | :--- |
| Name | Math Function Enable |
| Object Type | ARRAY |
| Data Type | BOOLEAN |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 2 |
| Default Value | 2 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Enable |


| Access | RW |
| :--- | :--- |
| PDO Mapping | No |
| Value Range | 0 (FALSE) or 1 (TRUE) |
| Default Value | 0 [FALSE] |

### 3.3.45. Object 4021h: Math Output Scaling 1 PV

This object defines the process value that would correspond to $0 \%$ output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

## Object Description

| Index | 4021h |
| :--- | :--- |
| Name | Math Output Scaling 1 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to 6h (Y= 1 to 6) |
| :--- | :--- |
| Description | Math Y Output Scaling 1 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | -32768 to 32767 |
| Default Value | 0 |

### 3.3.46. Object 4023h: Math Output Scaling 2 PV

This object defines the process value that would correspond to $100 \%$ output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

Object Description

| Index | 4023h |
| :--- | :--- |
| Name | Math Output Scaling 2 PV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |


| PDO Mapping | No |
| :--- | :--- |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6) |
| :--- | :--- |
| Description | Math Y Output Scaling 2 PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | -32768 to 32767 |
| Default Value | $10000(100.00)$ |

### 3.3.47. Object 4030h: Math Output Process Value

This read-only object reflects the output from the math function block after it has been scaled by objects 4021 h and 4023 h . The object would apply the resolution defined in object 4032 h Math Output Decimal Digits PV. The physical unit is undefined.

## Object Description

| Index | 4030h |
| :--- | :--- |
| Name | Math Output Process Value |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Output Process Value |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | -32768 to 32767 |
| Default Value | No |

### 3.3.48. Object 4032h: Math Output Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the output data, which is interpreted with data type Integer16 in the process value object.

Object Description

| Index | 4032h |
| :--- | :--- |
| Name | Math Output Decimal Digits PV |
| Object Type | ARRAY |


| Data Type | UNSIGNED8 |
| :--- | :--- |

Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Decimal Digits PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 |
| Default Value | $2(0.01)$ |

### 3.3.49. Object 4y00h: Math Y Input Source

This object defines the input sources that will be used in the mathematical calculations. Here, $\mathrm{y}=1$ to 6 - representing Math Block 1 to Math Block 6. If a control source is not used, the associate mathematical calculation would be ignored. The available control sources on the 18 Digital Inputs are listed in Table 11.

Object Description

| Index | 4y00h $(\mathrm{y}=1$ to 6$)$ |
| :--- | :--- |
| Name | Math Y Input Source |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Input X Source |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 11 |
| Default Value | 0 (control source not used) |

### 3.3.50. Object 4y01h: Math Y Input Number

This object defines the number of the input source that will be used in the math calculation. The available control numbers are dependent on the source selected, as shown in Table 12. Once selected, the input value will be used in the corresponding calculation as described in Section 2.7.

## Object Description

| Index | 4y01h $(\mathrm{y} \mathrm{=} \mathrm{1} \mathrm{to} \mathrm{6)}$ |
| :--- | :--- |
| Name | Math Y Input Number |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6 ) |
| :--- | :--- |
| Description | Math Y Input X Number |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 12 |
| Default Value | 0 (null input) |

### 3.3.51. Object 4y02h: Math Y Input Function Number

This object defines the number of the function within the Math Block will be used in the math calculation. This object is applicable when the Input Source together with the Input Number match the Math Block that is being configured. If Input Source and Input Number match the Math Block being configured and the Function Number is 0 , this object is ignored. For more details, refer to Section 2.7.

## Object Description

| Index | 4y01h $(\mathrm{y}=1$ to 6$)$ |
| :--- | :--- |
| Name | Math Y Input Number |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6) |
| :--- | :--- |
| Description | Math Y Input X Function Number |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 15 |
| Default Value | 0 (null input) |

### 3.3.52. Object 4y03h: Math Y Input Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the field value object.

## Object Description

| Index | $4 y 03 \mathrm{~h}$ ( $\mathrm{y}=1$ to 6) |
| :--- | :--- |
| Name | Math Y Input Decimal Digits FV |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Input X Decimal Digits PV |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to 4 |
| Default Value | $2(0.01)$ |

### 3.3.53. Object 4y20h: Math Y Input Scaling 1 FV

This object defines the input field value that would correspond to $0 \%$ when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object 4y03h Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

Object Description

| Index | 4y20h (y = 1 to 6) |
| :--- | :--- |
| Name | Math Y Input Scaling 1 FV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6) |
| :--- | :--- |
| Description | Math Y Input X Scaling 1 FV |
| Access | RW |
| PDO Mapping | No |
| Value Range | INTEGER16 |
| Default Value | 0 |

### 3.3.54. Object 4y22h: Math Y Input Scaling 2 FV

This object defines the input field value that would correspond to $100 \%$ when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object 4y03h Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

## Object Description

| Index | 4y22h (y = 1 to 6) |
| :--- | :--- |
| Name | Math Y Input Scaling 2 FV |
| Object Type | ARRAY |
| Data Type | INTEGER16 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6) |
| :--- | :--- |
| Description | Math Y Input X Scaling 2 FV |
| Access | RW |
| PDO Mapping | No |
| Value Range | INTEGER16 |
| Default Value | $10000(100.00 \%)$ |

### 3.3.55. Object 4y40h: Math Y Input Gain

This object can be used to adjust the 'weight' of the input in the math calculation. It is a multiplier of the input after it has been converted into a percentage, before it is used in the math calculation. This object has a fixed resolution of 2 decimal digits.

Object Description

| Index | $4 y 40 \mathrm{~h}(\mathrm{y} \mathrm{=} \mathrm{1} \mathrm{to} \mathrm{6)}$ |
| :--- | :--- |
| Name | Math Y Input Gain |
| Object Type | ARRAY |
| Data Type | INTEGER8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 6 |
| Default Value | 6 |


| Sub-Index | 1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$ |
| :--- | :--- |
| Description | Math Y Input X Gain |
| Access | RW |
| PDO Mapping | No |
| Value Range | -100 to 100 |
| Default Value | $100(1.0)$ |

### 3.3.56. Object 4y50h: Math Y Operator

This object defines the actual operators that will be used in each stage of a math calculation, as described in Section 2.7. The options for this object are listed in Table 21.

Object Description

| Index | $4 y 50 \mathrm{~h}(\mathrm{y} \mathrm{=} \mathrm{1} \mathrm{to} \mathrm{6)}$ |
| :--- | :--- |
| Name | Math Y Operator |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 3 |
| Default Value | 3 |


| Sub-Index | 1h to 3h $(X=1$ to 3$)$ |
| :--- | :--- |
| Description | Math Y Function X Operator |
| Access | RW |
| PDO Mapping | No |
| Value Range | See Table 30 |
| Default Value | 12 (Plus) |

### 3.3.57. Object 5010h: Constant Field Value

This object is provided to allow the user to compare against a fixed value, i.e. for setpoint control in a PID loop, or in a conditional evaluation for a logic block. The first two values in this object are fixed at FALSE (0) and TRUE (1). There are ten other sub-indexes provide for other unconstrained data.

## Object Description

| Index | 5010 h |
| :--- | :--- |
| Name | Constant Field Value |
| Object Type | ARRAY |
| Data Type | FLOAT32 |

## Entry Description

| Sub-Index | 0 |
| :--- | :--- |
| Description | Largest sub-index supported |
| Access | RO |
| PDO Mapping | No |
| Value Range | 15 |
| Default Value | 15 |


| Sub-Index | 1 |
| :--- | :--- |
| Description | Constant False |
| Access | RO |
| PDO Mapping | No |
| Value Range | 0 |
| Default Value | 0 (false) |


| Sub-Index | 2 |
| :--- | :--- |
| Description | Constant True |
| Access | RO |
| PDO Mapping | No |
| Value Range | 1 |
| Default Value | 1 (true) |


| Sub-Index | 3 |
| :--- | :--- |
| Description | Constant FV 3 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 3.141593 |


| Sub-Index | 4 |
| :--- | :--- |
| Description | Constant FV 4 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 2.718282 |


| Sub-Index | 5 |
| :--- | :--- |


| Description | Constant FV 5 |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 1.414214 |


| Sub-Index | 6 |
| :--- | :--- |
| Description | Constant FV 6 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 1.732051 |


| Sub-Index | 7 |
| :--- | :--- |
| Description | Constant FV 7 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 2.236068 |


| Sub-Index | 8 |
| :--- | :--- |
| Description | Constant FV 8 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 2.50 |


| Sub-Index | 9 |
| :--- | :--- |
| Description | Constant FV 9 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 5.00 |


| Sub-Index | 10 |
| :--- | :--- |
| Description | Constant FV 10 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 10.00 |


| Sub-Index | 11 |
| :--- | :--- |
| Description | Constant FV 11 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 20.00 |


| Sub-Index | 12 |
| :--- | :--- |
| Description | Constant FV 12 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 40.00 |


| Sub-Index | 13 |
| :--- | :--- |
| Description | Constant FV 13 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 60.00 |


| Sub-Index | 14 |
| :--- | :--- |
| Description | Constant FV 14 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 80.00 |


| Sub-Index | 15 |
| :--- | :--- |
| Description | Constant FV 15 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Float32 |
| Default Value | 1000.00 |

### 3.3.58. Object 5040h: Fault Detection Field Value

This read-only object is available for diagnostic feedback purposes. It reflects the measured over/under voltage powering the controller as well as the internal microcontroller temperature. The physical unit for this object is volts and ${ }^{\circ} \mathrm{C}$, respectively.

Object Description

| Index | 5040 h |
| :--- | :--- |
| Name | Power Supply Field Value |
| Object Type | VARIABLE |
| Data Type | FLOAT32 |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 3 |
| Default Value | 3 |


| Sub-Index | 1h |
| :--- | :--- |
| Description | Over Temperature Field Value |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 0 to $1250\left[{ }^{\circ} \mathrm{C} \times 10\right]$ |
| Default Value | 0 |


| Sub-Index | 2 h |
| :--- | :--- |
| Description | Over Voltage Field Value |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 0 to $500[\mathrm{~V} \times 10]$ |
| Default Value | 0 |


| Sub-Index | 3 h |
| :--- | :--- |
| Description | Under Voltage Field Value |
| Access | RO |
| PDO Mapping | Yes |
| Value Range | 0 to $500[\mathrm{~V} \times 10]$ |
| Default Value | 0 |

### 3.3.59. Object 5041h: FD Set Threshold

This object sets the value that will flag a fault detection error in the 18 Digital Input Input if the measured field value (5040h) goes above (FD 1 and FD 2) or below (FD 3) this limit. If error checking on the fault is enabled by object 5050h, then the module will flag an appropriate error on that channel. This value must be in the same units as the field value for the fault, as determined by the sub-index.

Object Description

| Index | 5041 h |
| :--- | :--- |
| Name | FD Set Threshold |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 3 |
| Default Value | 3 |


| Sub-index | 1h |
| :--- | :--- |
| Description | Over Temperature Set Threshold |
| Access | RW |
| PDO Mapping | No |
| Value Range | 5042 h at sub-index 1 to $1250\left[{ }^{\circ} \mathrm{C} \times 10\right]$ |


$\left\lvert\,$| Default Value | $1100\left(110.0^{\circ} \mathrm{C}\right)$ |
| :--- | :--- |
| Sub-index 2 h <br> Description Over Voltage Set Threshold <br> Access RW <br> PDO Mapping No <br> Value Range 5042 h at sub-index 2 to $1000[\mathrm{~V} \mathrm{x} \mathrm{10]}$ <br> Default Value $500(50.0 \mathrm{~V})$ |  |$.$$\quad\right.$.


| Sub-index | 3h |
| :--- | :--- |
| Description | Under Voltage Set Threshold |
| Access | RW |
| PDO Mapping | No |
| Value Range | 80 to 5042 h at sub-index $3[\mathrm{~V} \times 10]$ |
| Default Value | $90(9.0 \mathrm{~V})$ |

### 3.3.60. Object 5042h: FD Clear Threshold

This object sets the value that will clear a fault detection error in the 18 Digital Input Input if the measured field value (5040h) goes below (FD 1 and FD 2) or above (FD 3) this threshold. This value must be in the same units as the field value for the fault, as determined by the sub-index.

Object Description

| Index | 5042 h |
| :--- | :--- |
| Name | FD Clear Threshold |
| Object Type | ARRAY |
| Data Type | UNSIGNED16 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 3 |
| Default Value | 3 |


| Subindex | 1h |
| :--- | :--- |
| Description | Over Temperature Clear Threshold |
| Access | RW |
| PDO Mapping | No |
| Value Range | 500 to 5041 h at subindex $1\left[{ }^{\circ} \mathrm{C} \times 10\right]$ |
| Default Value | $850\left(85.0^{\circ} \mathrm{C}\right)$ |


| Subindex | 2 h |
| :--- | :--- |
| Description | Over Voltage Clear Threshold |
| Access | RW |
| PDO Mapping | No |
| Value Range | 5042 h at subindex 3 to |
|  | 5041 h at subindex $2[\mathrm{~V} \times 10]$ |
| Default Value | $480(48.0 \mathrm{~V})$ |


| Subindex | 3 h |
| :--- | :--- |
| Description | Under Voltage Clear Threshold |
| Access | RW |
| PDO Mapping | No |
| Value Range | 5041 h at subindex 3 to |
|  | 5042 h at subindex $2[\mathrm{~V} \times 10]$ |
| Default Value | $120(12.0 \mathrm{~V})$ |

### 3.3.61. Object 5050h: FD Enable Error Check 8 Faults

This object enables or disables the fault detection error-checking feature for each fault detectable by the 10 Universal Signal Inputs. The bitmap for this object at sub-index 1 is:

- Bit 0: Over Temperature Detection
- Bit 1: Over Voltage Detection
- Bit 2: Under Voltage Detection


## Object Description

| Index | 5050 h |
| :--- | :--- |
| Name | FD Enable Error Checking 8 Faults |
| Object Type | ARRAY |
| Data Type | UNSIGNED8 |

## Entry Description

| Sub-index | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 1 |
| Default Value | 1 |


| Sub-index | 1h |
| :--- | :--- |
| Description | Error Check for FD 1 to FD 3 |
| Access | RW |
| PDO Mapping | No |
| Value Range | Bit Value 0 = Error Check Disabled <br> Bit Value 1 = Error Check Enabled |
| Default Value | 00 h (all error check disabled) |

### 3.3.62. Object 5051h: FD Error Response Delay

This object is used to prevent intermittent faults from overloading the bus with error messages. The value is defined as a multiple of 1 ms . If a fault has been present during the entirety of the delay time, the 18 Digital Inputs will flag an error of the detected fault once the timer has expired. The object can be set to zero, in which case a fault will immediately trigger an error response.

## Object Description

| Index | 5051 h |
| :--- | :--- |
| Name | FD Error Response Delay |


| Object Type | ARRAY |
| :--- | :--- |
| Data Type | UNSIGNED16 |

## Entry Description

| Subindex | Oh |
| :--- | :--- |
| Description | Number of entries |
| Access | RO |
| PDO Mapping | No |
| Value Range | 3 |
| Default Value | 3 |


| Subindex | 1h to 3h |
| :--- | :--- |
| Description | Error Delay, FD 1 to FD 3 |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 to $10000[\mathrm{~ms}]$ |
| Default Value | $5000[\mathrm{~ms}]$ |

### 3.3.63. Object 5550h: Enable Automatic Updates

This object allows the controller to update objects to defaults automatically when an output type is changed. Be default this object is TRUE.

## Object Description

| Index | 5550 h |
| :--- | :--- |
| Name | Enable Auto Updates |
| Object Type | VARIABLE |
| Data Type | BOOLEAN |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 (FALSE) or 1 (TRUE) |
| Default Value | 1 [TRUE] |

### 3.3.64. Object 5555h: Start in Operational Mode

This object allows the unit to start in Operational mode without requiring the presence of a CANopen® Master on the network. It is intended to be used only when running the 18 Digital Inputs as a stand-alone module. This should always be set FALSE whenever it is connected to a standard master/slave network.

Object Description

| Index | 5555 h |
| :--- | :--- |
| Name | Start in Operational Mode |
| Object Type | VARIABLE |
| Data Type | BOOLEAN |

## Entry Description

| Sub-Index | Oh |
| :--- | :--- |
| Access | RW |
| PDO Mapping | No |
| Value Range | 0 (FALSE) or 1 (TRUE) |
| Default Value | 0 [FALSE] |

### 3.4. Emergency Frame Codes (EMCY)

The EMCY messages include the error code, which is a combination of the general error codes defined in DS-301 and the additional information of the error codes, as defined by DS-404. Object 1003h [Pre-Defined Error Field] maintains a list of all active error codes in the 10 Universal Signal Inputs.

The error codes stored in the list are 32-bit unsigned numbers, consisting of two 16 -bit fields. The lower 16 -bit field is the EMCY error code, and the higher 16-bit field is a manufacturer-specific code. The manufacturer-specific code is divided into two 8 -bit fields, with the higher byte indicating the error description, and the lower byte indicating the channel number where the error occurred.

| MSB |  |  | LSB |
| :--- | :---: | :---: | :---: |
| Error Description | Channel | EMCY Error Code |  |

Supported EMCY Codes

| EMCY Error <br> Code (hex) | Meaning |
| :---: | :--- |
| 0000 | Error Reset or No Error |
| 8130 | Life Guard or Heartbeat Error |
| FF00 | Out of Range Low at Input |
| FF01 | Out of Range High at Input |
| 8140 | Bus OFF Event |

Supported Error Descriptions

| Description <br> (hex) | Meaning |
| :---: | :--- |
| 01 | Fault at an analog input |
| 08 | Lost Heartbeat or Life Guard from a node |
| 10 | Fault Detection Error |

## Supported Channel Numbers

| Description <br> (hex) | Meaning |
| :---: | :--- |
| 01 | DI 1 or FD 1 (depending on description) |
| 02 | DI 2 or FD 2 (depending on description) |
| 03 | DI 3 or FD 3 (depending on description) |
| 04 | DI 4 |
| 05 | DI 5 |
| 06 | DI 6 |
| 07 | DI 7 |
| 08 | DI 8 |


| 09 | DI 9 |
| :--- | :--- |
| 0 A | DI 10 |

For example, the 18 Digital Inputs detects a low input error on input channel 3

| EMCY Code | $=0 x F F 00$ |
| :--- | :--- |
| Additional Information | $=0 \times 0103$ |
| Resulting Code in 1003h | $=0 \times 0103 F F 00$ |

### 3.5. 18 Digital Inputs Fault Mode Behaviour

The objects associated with the error response in the 18 Digital Inputs are listed in the following table. See section 3 for a detailed description of each object.

| Index <br> (hex) | Object |
| :---: | :--- |
| 1001 | Error Register |
| 1003 | Pre-Defined Error Field |
| 1029 | Error Behaviour |
| 7148 | DI Span Start |
| 7149 | DI Span End |
| 2110 | DI Enable Error Detection |
| 2111 | DI Error Clear Hysteresis |
| 2112 | DI Error Response Delay |
| 5040 | FD Field Value |
| 5041 | FD Set Threshold |
| 5042 | FD Clear Threshold |
| 5050 | FD Enable Error Check 8 Faults |
| 5051 | FD Error Response Delay |

If at any time there is an active fault on the 10 Universal Signal Inputs, bit 1 (Generic Error) of the Error Register will be set. If and only if there are no active faults will this bit be clear.

If a heartbeat or life-guard event is detected, then the controller will add the appropriate error code (see section 4.1) to the top of the list in object 1003h. The "channel" portion of the error code will contain the node ID of the module that failed to send the heartbeat/life guard message within the expected time. The controller will check subindex 1 (communication) of object 1029h to see if it has to change state.

All other faults that the 18 Digital Inputs can detect are related to the onboard I/O. Each type of I/O has an object call "Error Response Delay" associated with the various I/O channel. Upon reset of the controller, all possible faults that can be detected by the 18 Digital Inputs are in the inactive state. When a fault is first detected, it enters an error pending state, and a timer is loaded with the delay time. For a fault to become active, it must remain present until the timer has decremented to zero. If at any time during the delay period the fault is cleared, the fault reverts back to the inactive state, and the delay timer stops. (It is only active while an error is pending.) If the fault is still present when the timer has elapsed, then the fault enters the active state, and the appropriate error code (see section 4.1) is add to the top of the list in object 1003h. For DI and FD faults, the controller will check subindexes 3 and 6 respectively of object 1029h to see if it has to change bus state.

## 4. TECHNICAL SPECIFICATIONS

Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.

### 4.1. Power Supply

| Power Supply | 12 or 24 Vdc nominal operating voltage <br> $8 \ldots 60 \mathrm{Vdc}$ power supply range for voltage transients |
| :--- | :--- |
| Surge Protection | Provided |
| Reverse Polarity <br> Protection | Provided |
| Quiescent Current | $<25 \mathrm{~mA} @$ Vin $=24 \mathrm{~V}$ |

### 4.2. Inputs

| Inputs | 10 universal inputs are configurable as: <br> - PWM (low or high frequency) <br> - Frequency /RPM <br> - 16-Bit Counter <br> - Digital (on/off) <br> All inputs with the exception of 16 -Bit Counter are sampled every 1 ms . Analog Input types have a 12-bit resolution. <br> With current inputs, short circuit protection is provided. |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Minimum and Maximum Ratings | Absolute Maximum and Minimum Ratings |  |  |  |
|  | Characteristic |  | Max | Units |
|  | Power Supply |  | 36 | V dc |
|  | Digital Type Input - Voltage Level |  | 30 | Vdc |
|  | PWM Duty Cycle |  | 100 | \% |
|  | PWM Frequency |  | 10000 | Hz |
|  | PWM Voltage pk - pk |  | 30 | V dc |
|  | RPM Frequency |  | 10000 | Hz |
| Input Accuracy | Input Type Accuracy <br> P  |  | Resolution |  |
|  | PWM | $\begin{aligned} & +/-1 \%(<5 \mathrm{kHz}) \\ & +/-2 \%(>5 \mathrm{kHz}) \\ & \hline \end{aligned}$ | 0.1 [\%] |  |
|  | Frequency/RPM | +/-1\% | 0.01 [Hz] |  |
| Grounds | 1 Input GND is provided. |  |  |  |

### 4.3. Communication

CAN

[^1]| CAN Response Time | The maximum recommended transmit rate for any TPDO is 10ms. <br> Response time of feedback on the CAN to changes at the I/O will be a <br> combination of the I/O type's response time and the configurable software <br> filtering, delays, etc. that were selected in the application. |
| :--- | :--- |
| Node-ID and Baud Rate | Configurable using Layer Setting Services. <br> Default Node-ID = 127 and Baud Rate = 125 kbps. |
| Network Termination | According to the CAN standard, it is necessary to terminate the network <br> with external termination resistors. The resistors are 120 Ohm, 0.25W <br> minimum, metal film or similar type. They should be placed between <br> CAN_H and CAN_L terminals at both ends of the network. |

### 4.4. General Specifications

| Microprocessor | STM32F205VGT6 |
| :---: | :---: |
| Electrical Connections | 24-pin receptacle (equivalent TE Deutsch P/N: DTM13-12PA-12PB-R008) Mating plug equivalent to TE Deutsch P/Ns: DTM06-12SA and DTM06-12SB, with 2 wedgelocks (WM12S) and 24 contacts (0462-201-20141). 20 AWG wire is recommended for use with contacts 0462-201-20141. |
| Packaging and Dimensions | ```High Temperature Nylon PCB Enclosure - (equivalent TE Deutsch P/N: EEC-325X4B) 4.62\times5.24\times1.43 inches 117.42\times133.09 x 36.36 mm (W x L x H excluding mating plugs)``` |
| Operating Conditions | -40 to $85^{\circ} \mathrm{C}$ ( -40 to $185{ }^{\circ} \mathrm{F}$ ) |
| Weight | 0.55 lbs ( 0.25 kg ) |
| Protection | IP67, Unit is conformal coated in the housing. |
| Compliance | CE mark EMC Directive RoHS Directive |
| Mounting | Mounting holes sized for $1 / 4$ inch or M6 bolts. The bolt length will be determined by the end-user's mounting plate thickness. The mounting flange of the controller is 0.63 inches ( 16 mm ) thick. If the module is mounted without an enclosure, it should be mounted vertically with connectors facing left and right to reduce likelihood of moisture entry. The CAN wiring is considered intrinsically safe. The power wires are not considered intrinsically safe and so in hazardous locations, they need to be located in conduit or conduit trays at all times. The module must be mounted in an enclosure in hazardous locations for this purpose. <br> All field wiring should be suitable for the operating temperature range. <br> Install the unit with appropriate space available for servicing and for adequate wire harness access ( 6 inches or 15 cm ) and strain relief (12 inches or 30 cm ). |

## 5. VERSION HISTORY

| User <br> Manual <br> Version | Firmware <br> Version | Date | Author | Modifications |
| :---: | :--- | :--- | :--- | :--- |
| 1 | $1 . x x$ | August 21st, <br> 2014 | Gustavo Del <br> Valle | Initial Draft |
| - | - | Nov. 13/14 | Amanda Wilkins | Block diagram updated |
| 1.1 | - | July 31, 2023 | Kiril Mojsov | Performed Legacy Updates |

## OUR PRODUCTS

AC/DC Power Supplies

## Actuator Controls/Interfaces

## Automotive Ethernet Interfaces

Battery Chargers
CAN Controls, Routers, Repeaters
CAN/WiFi, CAN/Bluetooth, Routers
Current/Voltage/PWM Converters
DC/DC Power Converters
Engine Temperature Scanners
Ethernet/CAN Converters, Gateways, Switches

Fan Drive Controllers
Gateways, CAN/Modbus, RS-232
Gyroscopes, Inclinometers
Hydraulic Valve Controllers
Inclinometers, Triaxial

## I/O Controls

LVDT Signal Converters

## Machine Controls

Modbus, RS-422, RS-485 Controls
Motor Controls, Inverters
Power Supplies, DC/DC, AC/DC
PWM Signal Converters/Isolators
Resolver Signal Conditioners
Service Tools
Signal Conditioners, Converters
Strain Gauge CAN Controls
Surge Suppressors

## OUR COMPANY

Axiomatic provides electronic machine control components to the off-highway, commercial vehicle, electric vehicle, power generator set, material handling, renewable energy and industrial OEM markets. We innovate with engineered and off-the-shelf machine controls that add value for our customers.

## QUALITY DESIGN AND MANUFACTURING

We have an ISO9001:2015 registered design/manufacturing facility in Canada.

## WARRANTY, APPLICATION APPROVALS/LIMITATIONS

Axiomatic Technologies Corporation reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process at https://www.axiomatic.com/service/.

## COMPLIANCE

Product compliance details can be found in the product literature and/or on axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.

## SAFE USE

All products should be serviced by Axiomatic. Do not open the product and perform the service yourself.


This product can expose you to chemicals which are known in the State of California, USA to cause cancer and reproductive harm. For more information go to www.P65Warnings.ca.gov.

## SERVICE

All products to be returned to Axiomatic require a Return Materials Authorization Number (RMA\#) from sales@axiomatic.com. Please provide the following information when requesting an RMA number:

- Serial number, part number
- Runtime hours, description of problem
- Wiring set up diagram, application and other comments as needed


## DISPOSAL

Axiomatic products are electronic waste. Please follow your local environmental waste and recycling laws, regulations and policies for safe disposal or recycling of electronic waste.

## CONTACTS

```
Axiomatic Technologies Corporation
1445 Courtneypark Drive E.
Mississauga, ON
CANADA L5T 2E3
TEL: +19056029270
FAX: +19056029279
www.axiomatic.com
sales@axiomatic.com
```


## Axiomatic Technologies $\mathbf{O y}$

Höytämöntie 6
33880 Lempäälä
FINLAND
TEL: +358 103375750
www.axiomatic.com
salesfinland@axiomatic.com


[^0]:    (1)

    NOTE: Subindexes 4 and 5 are not used by this module, and have been left for compatibility with other Axiomatic I/O Controllers

[^1]:    1 CAN 2.0B port, protocol CiA CANopen®
    By default, the 18 Digital Inputs Controller transmits measured input (FV object 7100h) TPDO1, TPDO2, and TPDO3.

