10 OUTPUT VALVE CONTROLLER With CANopen®

USER MANUAL

P/N: AX021211

Axiomatic Technologies Oy Höytämöntie 6
33880 LEMPÄÄLÄ, Finland
Tel. +358 103375750
salesfinland@axiomatic.com www.axiomatic.fi

ACRONYMS

AO	Analog Output (Universal)
CAN	Controller Area Network
CANopen®	CANopen® is a registered community trademark of CAN in Automation e.V.
CAN-ID	CAN 11-bit Identifier
COB	Communication Object
CTRL	Control
DO	Digital Output
EDS	Electronic Data Sheet
EMCY	Emergency
LSB	Least Significant Byte (or Bit)
LSS	Layer Settling Service
LUT	Lookup Table
MSB	Most Significant Byte (or Bit)
NMT	Network Management
PID	Proportional-Integral-Derivative Control
RO	Read Only Object
RPDO	Received Process Data Object
RW	Read/Write Object
SDO	Service Data Object
TPDO	Transmitted Process Data Object
WO	Write Only Object

REFERENCES

[DS-301] CiA DS-301 V4.1 - CANopen® Application Layer and Communication Profile. CAN in Automation 2005
[DS-305] CiA DS-305 V2.0 - Layer Setting Service (LSS) and Protocols. CAN in Automation 2006
[DS-404] CiA DS-404 V1.2 - CANopen® profile for Measurement Devices and Closed Loop Controllers. CAN in Automation 2002

These documents are available from the CAN in Automation e.V. website http://www.can-cia.org/.

TABLE OF CONTENTS

1. OVERVIEW OF CONTROLLER 6
1.1. Description of Ten Valve Output Controller 6
1.2. Digital Output Function Block 9
1.3. Analog Output Function Block 11
1.4. PID Control Function Block 19
1.5. Lookup Table Function Block. 21
1.5.1. X-Axis, Input Data Response 21
1.5.2. \quad Y-Axis, Lookup Table Output 22
1.5.3. Point To Point Response 22
1.5.4. X-Axis, Time Response 24
1.6. Programmable Logic Function Block 25
1.6.1. Conditions Evaluation 28
1.6.2. Table Selection 29
1.6.3. Logic Block Output 30
1.7. Math Function Block 31
1.8. Miscellaneous Function Block 33
1.9. Dimensions and Pinout 35
1.10. Installation Instructions 36
2. CANOPEN® OBJECT DICTIONARY 36
2.1. NODE ID and BAUDRATE 37
2.1.1. LSS Protocol to Update. 37
2.2. COMMUNICATION OBJECTS (DS-301 AND DS-404) 41
2.2.1. Object 1000h: Device Type 42
2.2.2. Object 1001h: Error Register 43
2.2.3. Object 1002h: Manufacturer Status Register 43
2.2.4. Object 1003h: Pre-Defined Error Field 43
2.2.5. Object 100Ch: Guard Time 45
2.2.6. Object 100Dh: Lifetime Factor 45
2.2.7. Object 1010h: Store Parameters. 46
2.2.8. Object 1011h: Restore Parameters 47
2.2.9. Object 1016h: Consumer Heartbeat Time 48
2.2.10. Object 1017h: Producer Heartbeat Time 49
2.2.11. Object 1018h: Identity Object 49
2.2.12. Object 1020h: Verify Configuration 50
2.2.13. Object 1029h: Error Behaviour 51
2.2.14. RPDO Behaviour 53
2.2.15. TPDO Behaviour 56
2.3. APPLICATION OBJECTS (DS-404) 59
2.3.1. Object 6200h: DO Write State 16 Output Line2 60
2.3.2. Object 6202h: DO Polarity 16 Output Lines 60
2.3.3. Object 6250h: DO Fault Mode 1 Output Line 61
2.3.4. Object 6260h: DO Fault State 1 Output Line 61
2.3.5. Object 7300h: AO Output Process Value 62
2.3.6. Object 6302h: AO Decimal Digits PV 62
2.3.7. Object 6310h: AO Output Type 63
2.3.8. Object 7320h: AO Output Scaling 1 PV 63
2.3.9. Object 7321h: AO Output Scaling 1 FV 64
2.3.10. Object 7322h: AO Output Scaling 2 PV 64
2.3.11. Object 7323h: AO Output Scaling 2 FV 65
2.3.12. Object 7330h: AO Output Field Value. 66
2.3.13. Object 6332h: AO Decimal Digits FV 66
2.3.14. Object 6340h: AO Fault Mode 67
2.3.15. Object 7341h: AO Fault Field Value 67
2.3.16. Object 7F50h: Received Process Value 68
2.3.17. Object 6F52: Received Process Value Status 68
2.3.18. Object 23904: Static Output Bias 69
2.3.19. Object 7450h: PID Proportional Band 69
2.3.20. Object 7452h: PID Integral Action Time 70
2.3.21. Object 7454h: PID Derivative Action Time 71
2.3.22. Object 7456h: PID Cycle Time 71
2.3.23. Object 6458h: PID Physical Unit Timing 72
2.3.24. Object 6459h: PID Decimal Digits Timing 72
2.4. MANUFACTURER OBJECTS 73
2.4.1. Object 2220h: DO Hotshot Current 1 Output Line 75
2.4.2. Object 2221h: DO Hold Current 1 Output Line 75
2.4.3. Object 2222h: DO Hold Time 1 Output Line 76
2.4.4. Object 2223h: DO Blink Rate 1 Output Line 76
2.4.5. Object 2224h: DO Delay Time 1 Output Line 77
2.4.6. Object 2225h: DO Delay Polarity 1 Output Line 78
2.4.7. Object 2300h: AO Override Field Value 78
2.4.8. Object 2310h: AO Error Detect Enable 79
2.4.9. Object 2311h: AO Error Clear Hysteresis 79
2.4.10. Object 2312h: AO Error Reaction Delay 80
2.4.12. Object 2321h: AO Dither Amplitude 81
2.4.13. Object 2330h: AO Ramp Up 82
2.4.14. Object 2331h: AO Ramp Down 82
2.4.15. Object 2340h: AO Control Input Source 83
2.4.16. Object 2341h: AO Control Input Number 83
2.4.17. Object 2342h: AO Control Response 84
2.4.18. Object 2350h: AO Enable Input Source 84
2.4.19. Object 2351h: AO Enable Input Number 85
2.4.20. Object 2352h: AO Enable Response 86
2.4.21. Object 2360h: AO Override Input Source 86
2.4.22. Object 2361h: AO Override Input Number 87
2.4.23. Object 2362h: AO Override Response 87
2.4.24. Object 2370h: AO Feedback Field Value 88
2.4.25. Object 2380h: AO Output Frequency 88
2.4.26. Object 2382h: AO Current PID Proportional Gain 89
2.4.27. Object 2383h: AO Current PID Integral Time 89
2.4.28. Object 2384h: AO Current PID Derivative Time 90
2.4.29. Object 2450h: PID Tolerance 91
2.4.30. Object 2451h: PID Integral Gain 91
2.4.31. Object 2452h: PID Derivative Gain 92
2.4.32. Object 2453h: PID Target Source 92
2.4.33. Object 2454h: PID Target Number 93
2.4.34. Object 2455h: PID Feedback Source 93
2.4.35. Object 2456h: PID Feedback Number 94
2.4.36. Object 2457h: PID Control Response 94
2.4.37. Object 2460h: PID Output Field Value 95
2.4.39. Object 2502h: EC Decimal Digits PV 96
2.4.40. Object 2520h: EC Scaling 1 PV 97
2.4.41. Object 2522h: EC Scaling 2 PV 97
2.4.42. Object 3yzOh: LTyz Input X-Axis Source. 98
2.4.43. Object 3yz1h: LTyz Input X-Axis Number 98
2.4.44. Object 3yz2h: LTyz Auto Repeat 99
2.4.45. Object 3yz3h: LTyz X-Axis Decimal Digits PV 99
2.4.46. Object 3yz4h: LTyz Y-Axis Decimal Digits PV 99
2.4.47. Object 3yz5h: LTyz Point Response 100
2.4.48. Object 3yz6h: LTyz Point X-Axis PV 100
2.4.49. Object 3yz7h: LTyz Point Y-Axis PV 101
2.4.50. Object 3yz8h: LTyz Output Y-Axis PV 102
2.4.51. Object 3300h: Logic Block Enable 102
2.4.52. Object 3310h: Logic Block Selected Table 103
2.4.53. Object 3320h: Logic Block Output PV 103
2.4.54. Object $3 x 01$ h: LB(3-x) Lookup Table Numbers 104
2.4.55. Object 3x02h: LB(3-x) Function Logical Operator 104
2.4.65. Object 4000h: Math Function Enable 106
2.4.66. Object 4021h: Math Output Scaling 1 PV 106
2.4.67. Object 4023h: Math Output Scaling 2 PV 107
2.4.68. Object 4030h: Math Output Process Value. 108
2.4.69. Object 4032h: Math Output Decimal Digits PV 108
2.4.70. Object 4y00h: Math Y Input Source 109
2.4.71. Object 4y01h: Math Y Input Number 109
2.4.72. Object 4y02h: Math Y Input Function Number 110
2.4.73. Object 4y03h: Math Y Input Decimal Digits FV 110
2.4.74. Object 4y20h: Math Y Input Scaling 1 FV 111
2.4.76. Object 4y4Oh: Math Y Input Gain 112
2.4.77. Object 4y50h: Math Y Operator 113
2.4.78. Object 5010h: Constant Field Value 113
2.4.79. Object 5020h: Power Supply Field Value 116
2.4.80. Object 5030h: Processor Temperature Field Value 116
2.4.81. Object 5550h: Enable Automatic Updates 116
2.4.82. Object 5555h: Start in Operational Mode 117
3. TECHNICAL SPECIFICATIONS 118
3.1. POWER SUPPLY 118
3.2. OUTPUTS 118
3.3. COMMUNICATION. 118
3.4. General Specifications 118
4. VERSION HISTORY 119

1. OVERVIEW OF CONTROLLER

1.1. Description of Ten Valve Output Controller

This User Manual describes the architecture and functionality a ten proportional 2.5A output CANopen $®$ valve controller.

The 10 Output Valve Controller (CAN-10OUT) is designed for extremely versatile control of up to ten proportional outputs to directly drive coils or other loads. Its flexible circuit design gives the user a wide range of configurable output types. The sophisticated control algorithms allow the user to program the controller for a wide range of applications without the need for custom software.

There are ten universal outputs that can be setup to drive: proportional current (up to 2.5A each); hotshot digital current; proportional voltage (up to supply); proportional PWM; or straight on/off digital loads.

Figure 1A - Hardware Functional Block Diagram

The CAN-10OUT is a highly programmable controller, allowing the user to configure it for their application. Its sophisticated control algorithms allow for open or closed loop drive of the proportional outputs. It can be operated as either a self-contained control system, driving the outputs directly from the on-board logical function blocks, and/or it can be integrated into a CANopen® network of controllers. All outputs and logical function blocks on the unit are inherently independent from one another, but can be programmed to interact in a large number of ways. While Figure 1A shows the hardware features, Figure 1B shows the logical function blocks (software) available on the CAN-10OUT.

The CAN-10OUT has a number of built-in protection features that can shut off the outputs in adverse conditions. These features are described in detail in subsequent sections, and they include hardware shutoffs to protect the circuits from being damaged as well as software shutdown features that can be enabled in safety critical systems when an input or CAN fault is detected.

The various function blocks supported by the CAN-10OUT are outlined in the following sections. All objects are user configurable using standard commercially available tools that can interact with a CANopen® Object Dictionary via an .EDS file.

Figure 1B -Logic Functional Block Diagram

1.2. Digital Output Function Block

The digital output (DO) function block only becomes applicable on the output when object 6310h, AO Output Type, is set to a digital output type (Output type $=1000$ or 1020).

Figure 2 - Digital Output Objects
Several of the objects shown in the above diagram are in fact associated with the Analog Output function block, and are explained in detail in Section 1.3. Therefore, this section will only elaborate on the objects unique to the DO function block.

An output can be controlled either by an on-board control signal (such the result from a lookup table or a math function) or a CANopen® object that has been mapped to an RPDO. In the case of an output configured for a digital response, when a CANopen® Message has been selected as the 2340h AO Control Input Source (see Table 4), then data from the appropriate bit within the subindex from write-mappable object 6200h DO Write State will be used as the control signal. The format of object 6200 h will be as follows:

Sub-index1:

Bit10-Bit15	Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	DO10	DO9	DO8	DO7	DO6	DO5	DO4	DO3	DO2	DO1

For digital outputs DO1 to DO10, the Enable and Override Inputs and Responses in the digital mode are the same as for an Analog Output, and are evaluated in the same order. Therefore, what is described in Section 1.3 for these also applied for the DO function block for all outputs.

As with the AO function, the DO1 to DO10 will respond to the Control Input if and only if the following conditions have been met:
a) No fault is detected for any of the control signals
b) The override command is either ignored or false (Override Input)
c) The output has not been disabled by a secondary signal (Enable Input)

The resulting DO Drive State will depend on the object 6202h DO Polarity, as per Table 1. By default, normal on/off output logic is used.

Value	Meaning	DO Logic State	DO Drive State
$\mathbf{0}$	Normal On/Off	OFF	OF
		OFF	
	Inverse On/Off	OFF	ON
	ON	ON	

Table 1 - Object 6240h - DO Polarity Options
When the regular on/off output logic is used, objects 2224h Digital Out Delay and 2225h Delay Polarity come to effect. When this object is $>0 \mathrm{~ms}$, however, this value will determine how long after the output will react once it is commanded has been driven will the output react. Object 2225 h Delay Polarity determines on which edge the delay will affect. By default, Digital Out Delay is set to Oms (no delay) and Delay Polarity is set to rising edge - in which case the output will react as soon as it is commanded.

The read-only mappable object 2370 h AO Feedback FV will be loaded with the DO Drive State ($0=\mathrm{OFF}, 1=\mathrm{ON}$) when the output is setup for a digital type.

Outside of a straight ON/OFF digital output (where ON $=+$ Vps applied to output pin), there is a second type of digital output called a "Hotshot." This output is designed to work with inductive loads (i.e. a hydraulic valve) that can be hotshot with a high current for a short period of time to fully open the load. Then, the current is dropped back to a lower holding value to keep it open until the DO Drive State turns off as shown in Figure 3.

Objects 2220h DO Hotshot Current, 2221h DO Hold Current, and 2222h DO Hotshot Time are used with this output type to drive the load. Since the output timer is used for the hotshot time, DO Polarity option 3, Blinking Logic does not apply with this output type. The response in this case will be the same as option 1, Normal On/Off logic.

Figure 3 - Hotshot Digital Profile
As mentioned in the Controller Overview, any digital output can be setup to react to a fault detected on any of the inputs to the function block (control, enable or override.) Should any one of these inputs be showing an error condition, object 6250h DO Fault Mode determines how the
output will respond, per Table 2. By default, the output will revert to the state defined in object 6260h DO Fault State.

Value	Meaning
0	Maintain Last State
1	Apply Pre-Defined State

Table 2 - Object 6250h - DO Fault Mode Options

1.3. Analog Output Function Block

The analog output (AO) function block is the default logic associate with outputs 1 thru 10.

Figure 4 - Analog Output Objects
There are many objects associated with the analog output function block, but not all of them apply to all output types or control conditions. To start with, object 6310h AO Output Type defines how the output drive circuitry will be configures as per Table 3. This table also shows the output unit and range for each type. By default, analog outputs are configured as proportional current types.

Value	Meaning	Range [Unit]
0	Output Disabled	N/A
10	Output Voltage	0 to $60[\mathrm{~V}]$
$\mathbf{2 0}$	Output Current	$\mathbf{0}$ to $\mathbf{2 5 0 0}$ [mA]
40	Output PWM	0 to 100 [\%]
1000	Output Digital On/Off	0 (OFF) or 1 (ON)
1020	Output Digital Hotshot	0 (OFF) or 1 (ON)

Table 3-Object 6310h - AO Output Type Options

When the output type is changed, all objects related to the output (scaling PV, Decimal Digits PV, etc) are automatically updated by default. Object 5550h enables/disables automatic updates. When disabled (set to False), the objects are to be manually configured.

The Current output has been factory calibrated for a close-loop PID control, and these objects should not be changed without proper consideration. In Voltage mode, the output is actually a high frequency PWM signal that is being adjusted by the processor such that the average voltage would match the target FV, up to the supply voltage. External filtering of the signal would have to be applied to get a true DC voltage. In PWM mode, the FV represents the output duty cycle. The digital output types have been covered in Section 1.2

Objects 7300h (AO Output PV) and 7F50h (Received PV) can be used to control the proportional outputs. In the case of mapping object 7F50h (as opposed to 7300h) to an RPDO to control the outputs - object 6F50h must be validated in order for the controller to accept the data in object 7F50h to process.

The relationship between the Process Value (input) and the Field Value (output) is a linear one, as shown in Figure 5. However, the output will actually use the AO Scaling FV objects as limits to the drive, such that the output will hold at the minimum and maximum FV points, as shown in the figure.

Figure 5 - Analog Output Linear Scaling PV to FV
The CAN-10OUT controller allows for the PV input can be selected from the list of the logical function blocks supported by the controller as shown in Figure 1B. As a result, any output from one function block can be selected as the control source for another. Keep in mind that not all options make sense in all cases, but the complete list of control sources is shown in Table 4. By default, analog outputs are setup to respond to the corresponding CANopen® RPDO message.

Value	Meaning
0	Control Source Not Used (Ignored)
1	CANopen® Message (RPDO)
2	Constant Function Block
3	PID Control Function Block
4	Lookup Table Function Block
5	Mathematical Function Block
6	Programmable Logic Function Block
7	Output Commanded Field Value

8	Output Feedback Field Value
9	Power Supply Measured
10	Processor Temperature Measured

Table 4 - Control Source Options
In addition to a source, each control also has a number which corresponds to the sub-index of the function block in question. Table 5 outlines the ranges supported for the number objects, depending on the source that had been selected.

Control Source	Range	Object (Meaning)
Control Source Not Used	0	Ignored
CANopen® Message (RPDO)	1	7300h sub-index 1
	2	7300h sub-index 2
	3	7300h sub-index 3
	4	7300h sub-index 4
	5	7300h sub-index 5
	6	7300h sub-index 6
	7	7300h sub-index 7
	8	7300h sub-index 8
	9	7300h sub-index 9
	10	7300h sub-index 10
	11	2500h sub-index 1 (Extra Received PV 1)
	12	2500h sub-index 2 (Extra Received PV 2)
	13	2500h sub-index 3 (Extra Received PV 3)
	14	2500h sub-index 4 (Extra Received PV 4)
	15	2500h sub-index 5 (Extra Received PV 5)
	16	2500h sub-index 6 (Extra Received PV 6)
	17	2500h sub-index 7 (Extra Received PV 7)
	18	2500h sub-index 8 (Extra Received PV 8)
	19	2500h sub-index 9 (Extra Received PV 9)
	20	2500h sub-index 10 (Extra Received PV 10)
	21	2500h sub-index 11 (Extra Received PV 11)
	22	2500h sub-index 12 (Extra Received PV 12)
	23	2500h sub-index 13 (Extra Received PV 13)
	24	2500h sub-index 14 (Extra Received PV 14)
* Depending on AO Output Type selected, either the AO Output PV or DO Write State will be used		
Constant Function Block	1	5010h sub-index 1 (always FALSE)
	2	5010h sub-index 2 (always TRUE)
	3	5010h sub-index 3 (Constant FV 3)
	4	5010h sub-index 4 (Constant FV 4)
	5	5010h sub-index 5 (Constant FV 5)
	6	5010h sub-index 6 (Constant FV 6)
	7	5010h sub-index 7 (Constant FV 7)
	8	5010h sub-index 8 (Constant FV 8)
	9	5010h sub-index 9 (Constant FV 9)
	10	5010h sub-index 10 (Constant FV 10)
	11	5010h sub-index 11 (Constant FV 11)
	12	5010h sub-index 12 (Constant FV 12)
	13	5010h sub-index 13 (Constant FV 13)

	14	5010h sub-index 14 (Constant FV 14)
	15	5010h sub-index 15 (Constant FV 15)
PID Control Function Block	1	2460h sub-index 1 (PID Output FV 1)
	2	2460h sub-index 2 (PID Output FV 2)
	3	2460h sub-index 3 (PID Output FV 3)
	4	2460h sub-index 4 (PID Output FV 4)
Lookup Table Function Block	1	3017h (Lookup Table 1 Output Y-Axis PV)
	2	3027h (Lookup Table 2 Output Y-Axis PV)
	3	3037h (Lookup Table 3 Output Y-Axis PV)
	4	3047h (Lookup Table 4 Output Y-Axis PV)
	5	3057h (Lookup Table 5 Output Y-Axis PV)
	6	3067h (Lookup Table 6 Output Y-Axis PV)
	7	3077h (Lookup Table 7 Output Y-Axis PV)
	8	3087h (Lookup Table 8 Output Y-Axis PV)
	9	3097h (Lookup Table 9 Output Y-Axis PV)
	10	3107h (Lookup Table 10 Output Y-Axis PV)
	11	3117h (Lookup Table 11 Output Y-Axis PV)
	12	3127h (Lookup Table 12 Output Y-Axis PV)
Mathematical Function Block	1	4350h sub-index 1 (Math Output PV 1)
	2	4350h sub-index 2 (Math Output PV 2)
	3	4350h sub-index 3 (Math Output PV 3)
	4	4350h sub-index 4 (Math Output PV 4)
	5	4350h sub-index 5 (Math Output PV 5)
	6	4350h sub-index 6 (Math Output PV 6)
Programmable Logic Function Block	1	3xy7h (Lookup Table Selected by Logic 1)
	2	3xy7h (Lookup Table Selected by Logic 2)
	3	3xy7h (Lookup Table Selected by Logic 3)
	4	3xy7h (Lookup Table Selected by Logic 4)
NOTE: The following options should be considered for diagnostic feedback, and should not be selected as a control source for logic inputs (i.e. output control or lookup table X-Axis)		
Output Commanded Field Value	1	7330h sub-index 1 or "DO1 Logic State"
	2	7330h sub-index 2 or "DO2 Logic State"
	3	7330h sub-index 3 or "DO3 Logic State"
	4	7330h sub-index 4 or "DO4 Logic State"
	5	7330h sub-index 5 or "DO5 Logic State"
	6	7330h sub-index 6 or "DO6 Logic State"
	7	7330h sub-index 7 or "DO7 Logic State"
	8	7330h sub-index 8 or "DO8 Logic State"
	9	7330h sub-index 9 or "DO9 Logic State"
	10	7330h sub-index 10 or "DO10 Logic State"
Output Feedback Field Value	1	2370h sub-index 1 (AO1 FB or DO1 State)
	2	2370h sub-index 2 (AO2 FB or DO2 State)
	3	2370h sub-index 3 (AO3 FB or DO3 State)
	4	2370h sub-index 4 (AO4 FB or DO4 State)
	5	2370 sub-index 5 (AO5 FB or DO5 State)
	6	2370h sub-index 6 (AO6 FB or DO6 State)
	7	2370 h sub-index 7 (AO7 FB or DO7 State)
	8	2370h sub-index 8 (AO8 FB or DO8 State)

	9	2370 h sub-index 9 (AO9 FB or DO9 State)
	10	2370 h sub-index 10 (AO10 FB or DO10 State)
Power Supply Measured	N/A	5020 h (Power Supply FV)
Processor Temperature Measured	N/A	5030 h (Processor Temperature FV)

Table 5 - Control Number Options Depending on Source Selected

There are three inputs to the output function block, each one with a unique source and number object. For the control function (PV axis in Figure 5), objects 2340h AO Control Input Source and 2341h AO Control Input Number are used. For the enable function, objects 2350h AO Enable Input Source and 2351h AO Enable Input Number are used. Lastly, for the override function, objects 2360h AO Override Input Source and 2361h AO Override Input Number are used.

When using any control source as the X-Axis input to a function block, the corresponding scaling limits are defined as per Table 6. It is the responsibility of the user to make sure that the scaling objects for any function block are setup appropriately depending on the source selected for the XAxis input.

Note that for the Outputs, the actual objects for the scaling ($6302 \mathrm{~h}, 7320 \mathrm{~h}, 7322 \mathrm{~h}$) should be edited to match the objects defined in this table when the control source is changed.

Control Source	Scaling 1	Scaling 2	Dec Digits
CANopen® Message - Num 1 to 10	7320h	7322h	6302h
```CANopen® Message - Num 11 to 24```	2520h	2522h	2502h
Constant Function Block	N/A	N/A	N/A (float)
PID Control Function Block	0\%	100\%	1 (fixed)
Lookup Table yz Function Block (where yz = 01 to 12)	0 or lowest from $3 y z 6 h^{(*)}$	100 or highest from 3yz6h ${ }^{(*)}$	3yz3h
Mathematical Function	4021h	4023h	4032h
Programmable Logic Function	0\%	100\%	1 (fixed)
Output Commanded Field Value	7320h	7322h	6302h
Output Feedback Field Value	7320h	7322h	6302h
Power Supply Measured	N/A	N/A	1 (fixed)
Processor Temperature Measured	N/A	N/A	1 (fixed)

(*) - Whichever value is smaller; (**) - Whichever value is larger

## Table 6 - Scaling Limits per Control Source

As shown in Figure 5, the Output FV will be calculated based on the FV scaling selected. Since 7321 h represents the value at or below the lowest control input received, it represents the minimum field value that will be applied at the output. Similarly, 7323h represents the maximum FV that will be applied.

While (7320h < 7322h) must always hold true, in order to get an inverse response (i.e. output decreases as the input increased), simply set 7321 h higher than 7323 h .

In general, the profile shown in Figure 5 holds true. However, in some cases it may be desired that the minimum offset not be applied when the value is outside of the range, i.e. when using a joystick profile with a deadband. For this reason, object 2342h AO Control Response has the options shown in Table 7.

Value	Meaning
0	Single Output Profile (Figure 5)
1	Output OFF below Scaling 1 PV
2	Output OFF above Scaling 2 PV

## Table 7 - Object 2342 - AO Control Response Options

Enable and Override inputs have been mentioned several times already. By default, neither inputs are used (control sources are set to $0=$ Ignore), but they can be activated for safety interlocks or other more complex applications. Table 8 shows the options for object 2352h AO Enable Response.

Value	Meaning
0	Enable When ON, Else Shut OFF
1	Enable When ON, Else Ramp OFF
2	Enable When ON, Else Keep Last Value
3	Enable When OFF, Else Shut OFF
4	Enable When OFF, Else Ramp OFF
5	Enable When OFF, Else Keep Last Value

Table 9 shows options for object 2362h AO Override Response respectively. In both cases, the default responses are bolded. When the override is applied, the output is driven to the value defined in object 2300h, AO Override FV.

Value	Meaning
$\mathbf{0}$	Override When ON
1	Override When OFF

Table 9 - Object 2362h - AO Override Response Options

When an input to the output block goes into an error condition, object 6340 AO Fault Mode determines how the output will respond, per Table 10. By default, the output will be driven to the value defined in object 7341h AO Fault FV.

Value	Meaning
0	Maintain Last State
1	Apply Pre-Defined FV

Table 10 - Object 6340-AO Fault Mode Options
The controller applies the logic shown in Figure 6 when evaluating what output FV to apply. Under normal conditions, i.e. when the control input is driving the output as shown in the green box, there are ramping objects that can be applied to soften the output response. Object 2330h AO Ramp Up and object 2331 AO Ramp Down are both millisecond numbers that define how long it will take to ramp from AO Scaling 1 FV to AO Scaling 2 FV .
There are three 'Timer Banks' in the CAN-10OUT that drive all ten outputs. bank 1 is shared between outputs $1-4$, bank 2 is shared between outputs $5-8$, and bank 3 is shared between outputs 9-10. Object 2380h AO Output Frequency allows for adjusting the frequency of the outputs. However, since the outputs do not have an independent timer driving each output, if any output in its respective bank is set to Current and/or Hotshot Current types - the output frequency is
defaulted to 25 kHz and cannot be adjusted. AO Output Frequency can be adjusted as long as none of the outputs are set to Current and/or Hotshot Current types in their respective bank.

Object 2320h AO Dither Frequency and object 2321h AO Dither Amplitude are only applicable with current output types. The dither is a low frequency signal that is superimposed on-top of the high frequency output. While the dither frequency will match exactly what is in object 2320h, the exact amplitude of the dither will depend on the properties of the coil. When adjusting 2321 h , select a value that is high enough to ensure an immediate response to the coil to small changes in the control inputs, but not so large as to effect the accuracy or stability of the output. If 2321h is set to zero, dithering is disabled. The dither frequency, as for the output frequency, is shared between the outputs in each bank. The dither amplitude, however, is independent of one another.

Object 2390h is used to tune the output control function (defined by $7320 \mathrm{~h}, 7321 \mathrm{~h}, 7322 \mathrm{~h}, 7323 \mathrm{~h}$ ). The output value is reduced by amount of milliamps (or millivolts, etc. depending on the output type) written into 2390h, when the output process value is set to zero. This bias is applied also to ramp control, making the ramping to jump over the static bias region.

There are three other objects associated with the close-loop PID control of the current through an inductive load. These objects have been factory calibrated, and should not be changed. However, the user does have access to these objects in the unlikely case that they should be adjusted. These objects are 2382h, AO Current PID Proportional Gain, 2383h AO Current PID Integral Time, and 2384h AO Current PID Derivative Time. These objects must not be confused with PID objects in the PID function block which operates independently of the close-loop current control.


Figure 6 - Analog Output Logic Flowchart
In addition to the read-only mappable object 7330 h AO Output Field Value (as represented by the green box above), there is another object 2370h AO Feedback FV, also read-only mappable. This object reflects the actual measured value at the output. It is also used to detect and flag an error if there is an open or short circuit at the output.

If object 2310 h AO Error Detect Enable is set to TRUE, then the absolute value between the desired output FV (7330h) and the measured feedback (2370h) is compared to 2311h AO Error Clear Hysteresis. If the difference between the target and the actual exceeds the hysteresis value, then a fault is present. Since both open and short circuits read close to zero feedback, a signal is also sent to the processor whenever a short (to either GND or +Vcc ) has occurred.
The controller will then flag an "Open Circuit" fault. If the flag stays active for the 2312 h AO Error Reaction Delay time, then an appropriate EMCY message will be added to object 1003h PreDefined Error Field. The application will react to the EMCY message as defined by object 1029h

Error Behaviour at the sub-index corresponding to an Input Fault. Refer to section 2.2.4 and 3.2.13 for more information about objects 1003h and 1029h, including the complete list of EMCY messages.

Once the absolute difference between the target and feedback FV comes back with the tolerance defined in 2311 h , the error flag is cleared. This means that when the output is commanded off, the flags are automatically reset, since the target and feedback are now both zero.

### 1.4. PID Control Function Block

The PID control (PID) function blocks are not used by default.


Figure 7 - PID Control Objects
As with the output function block, the PID control function has control inputs associate with it that can be mapped to the output from any other function block. Objects 2453h PID Target Source and 2454h PID Target Number define what value the PID loop will attempt to maintain. For example, in the case of a setpoint (fixed) control application, this input can be mapped to one of object 5010h, a Constant FV. In this case, since there is no pre-defined range associated with a constant (see Table 6), the scaling limits will be set equal to those of the feedback input. Otherwise, the target input units do not have to match the feedback units, so long as they are scaled relative to one another.

Objects 2355h PID Feedback Source and 2356h PID Feedback Number define the close-loop input. Both the target and feedback use Tables 4 and 5 as the available options. Both inputs are normalized to a percentage based on the associated scaling limits as defined in Table 6.

Object 2450h PID Tolerance defines the acceptable difference between the target and feedback, as a percentage, whereby an absolute difference smaller than this is treated as a $0 \%$ error.

Unless both the target and feedback inputs have legitimate control sources selected, the PID loop is disabled. When active, however, the PID algorithm will be called every 7456h PID Cycle Time, the default being every 10 ms .

Object 6458h PID Physical Unit Timing is a read-only value and is defined in Seconds. The default value for object 6459h PID Decimal Digits Timing is 3 , which means the object 7456 h , along with other PID timing objects, are interpreted in milliseconds. Other time objects associated with the PID control are 7452h PID Integral Action Time (Ti) and 7454h PID Derivative Action Time (Td).

None time related objects use a fixed resolution of 1 decimal digit. These objects include 7450h PID Proportional Band (G), 2450h PID Tolerance, 2451h PID Integral Gain (Ki), and 2454h PID Derivative Gain (Kd).

By default, the PID loop is assumed to be controlling a single output which will increase/decrease as the feedback over/undershoots the target. However, some systems may require a push-pull response where one output comes on when over target, and the other when under. Object 2457 h PID Control Response allows the user to select the response profile as needed from Table 11.

Value	Meaning
$\mathbf{0}$	Single Output
1	On When Over Target
2	On When Below Target

Table 11 - PID Control Response Options
The PID algorithm used is shown below, with names in red being the object variables. The result PIDOutputk is written to the read-only mappable object 2460 h PID Output Field Value, and is interpreted as a percentage value with 1 decimal place resolution. It can be used as the control source for another function block, i.e. one of the analog outputs.

```
T = Loop_Update_Rate*0.001
P_Gain = G
I_Gain = G*Ki*T/Ti
D_Gain = G*Kd*Td/T
Note: If Ti is zero, I_Gain = 0
Errork = Target - Feedback
```



```
P
I
Dk
PIDOutput
```

Figure 8 - PID Control Algorithm
Each system will have to be tuned for the optimum output response. Response times, overshoots and other variables will have to be decided by the customer using an appropriate PID tuning strategy.

### 1.5. Lookup Table Function Block

The lookup table (LTz) function blocks are not used by default.


Figure 9 - Lookup Table Objects
Lookup tables are used to give an output response of up to 10 slopes per input. The array size of the objects 3yz5h LTyz Point Response, 3yz6h LTyz Point X-Axis PV and 3yz7h Point Y-Axis PV shown in the block diagram above is therefore 11.

Note: If more than 10 slopes are required, a Programmable Logic Block can be used to combine up to three tables to get 30 slopes, as is described in Section 1.6.

A parameter that will affect the function block is object 3yz5h sub-index 1 which defines the " X Axis Type". By default, the tables have a 'Data Response' output (0). Alternatively, it can be selected as a 'Time Response' (1). ,

There are two (or three) other key parameters that will affect how this function block will behave depending on the "X-Axis Type" chosen. If chosen 'Data Response', then the objects 3yzOh Lookup Table yz Input X-Axis Source and 3yz1h Lookup Table yz Input X-Axis Number together define the control source for the function block. When it is changed, the table values in object $3 y z 6 h$ need to be updated with new defaults based on the X-Axis source selected as described in Tables 4 and 5. If however, the "X-Axis Type" is chosen to be 'Time Response', an additional parameter is taken into consideration - object 3yz2h, Lookup Table yz Auto Repeat. These will be described in more detail in Section 1.5.4.

### 1.5.1. X-Axis, Input Data Response

In the case where the "X-Axis Type" = 'Data Response', the points on the X-Axis represents the data of the control source.

However, should the minimum input be less than zero, for example a resistive input that is reflecting temperature in the range of $-40^{\circ} \mathrm{C}$ to $210^{\circ} \mathrm{C}$, then the "LTz Point X-Axis PV sub-index $1^{\prime \prime}$ will be set to the minimum instead, in this case $-40^{\circ} \mathrm{C}$.

The constraint on the $X$-Axis data is that the next index value is greater than or equal to the one below it, as shown in the equation below. Therefore, when adjusting the $X$-Axis data, it is recommended that $X_{11}$ is changed first, then lower indexes in descending order.

MinInputRange $<=\mathrm{X}_{1}<=\mathrm{X}_{2}<=\mathrm{X}_{3}<=\mathrm{X}_{4}<=\mathrm{X}_{5}<=\mathrm{X}_{6}<=\mathrm{X}_{7}<=\mathrm{X}_{8}<=\mathrm{X}_{9}<=\mathrm{X}_{10}<=\mathrm{X}_{11}<=$ MaxInputRange
As stated earlier, MinInputRange and MaxInputRange will be determined by the scaling objects associated with X-Axis Source that has been selected, as outlined in Table 6.

### 1.5.2. $\quad$-Axis, Lookup Table Output

## By default, it is assumed that the output from the lookup table function block will be a percentage value in the range of 0 to 100.

In fact, so long as all the data in the Y -Axis is $0<=\mathrm{Y}[\mathrm{i}]<=100$ (where $\mathrm{i}=1$ to 11 ) then other function blocks using the lookup table as a control source will have 0 and 100 as the Scaling 1 and Scaling 2 values used in linear calculations shown in Table 6.

However, the Y-Axis has no constraints on the data that it represents. This means that inverse, or increasing/decreasing or other responses can be easily established. The Y-Axis does not have to be a percentage output, but could represent full scale process values instead.

In all cases, the controller looks at the entire range of the data in the Y-Axis sub-indexes, and selects the lowest value as the MinOutRange and the highest value as the MaxOutRange. So long as they are not both within the 0 to 100 range, they are passed directly to other function blocks as the limits on the lookup table output. (i.e. Scaling 1 and Scaling 2 values in linear calculations.)

Even if some of the data points are 'Ignored' as described in Section 1.5.3, they are still used in the Y-Axis range determination. If not all the data points are going to be used, it is recommended that Y10 be set to the minimum end of the range, and Y11 to the maximum first. This way, the user can get predictable results when using the table to drive another function block, such as an analog output.

### 1.5.3. Point To Point Response

By default, all six lookup tables have a simple linear response from 0 to 100 in steps of 10 for both the X and Y axes. For a smooth linear response, each point in the 30z5h LTz Point Response array is setup for a 'Ramp To' output.

Alternatively, the user could select a 'Step To' response for $30 z 4 \mathrm{~h}$, where $\mathrm{N}=2$ to 11 . In this case, any input value between $X_{N-1}$ to $X_{N}$ will result in an output from the lookup table function block of Yn. (Recall: LTz Point Response sub-index 1 defines the X-Axis type)

Figure 10 shows the difference between these two response profiles with the default settings.


Figure 10 - Lookup Table Defaults with Ramp and Step Responses
Lastly, any point except $(1,1)$ can be selected for an 'Ignore' response. If LTz Point Response sub-index $\mathbf{N}$ is set to ignore, then all points from $\left(X_{N}, Y_{N}\right)$ to $\left(X_{11}, Y_{11}\right)$ will also be ignored. For all data greater than $X_{N-1}$, the output from the lookup table function block will be $\mathrm{Y}_{\mathrm{N}-1}$.

A combination of 'Ramp To', 'Jump To' and 'Ignore' responses can be used to create an application specific output profile. An example of where the same input is used as the X-Axis for two tables, but where the output profiles 'mirror' each other for a deadband joystick response is shown in Figure 11. The example shows a dual slope percentage output response for each side of the deadband, but additional slopes can be easily added as needed. (Note: In this case, since the analog outputs are responding directly to the profile from the lookup tables, both would have object 2342h AO Control Response set to a 'Single Output Profile.')


Figure 11 - Lookup Table Examples to Setup for Dual-Slope Joystick Deadband Response
To summarize, Table 12 outlines the different responses that can be selected for object $30 z 4 \mathrm{~h}$, both for the X -Axis type and for each point in the table.

Sub-Index	Value	Meaning
1	0	Data Response (X-Axis Type)
$n$		Ignore (this point and all following it)
2 to 11	1	Time Response (X-Axis Type)
1		Ramp To (this point)
2 to 11	N/A (not an allowed option)	
1	Jump To (this point)	
2 to 11	Table 12 - LTyz Point Response Options	

### 1.5.4. X-Axis, Time Response

As mentioned in Section 1.3, a lookup table can also be used to get a custom output response where the "X-Axis Type" is a 'Time Response'. When this is selected, the X-Axis now represents time, in units of milliseconds, while the Y -Axis still represents the output of the function block.

With this response, the sequence will start depending on two parameters:

- Lookup Table yz Input X-Axis Source Object 3yzOh and;
- Lookup Table yz Auto Repeat Object 3yz2h

By default, the "Auto Repeat" object is set to FALSE (0). In this case, the lookup table will react in the following way:

The X-Axis control source is treated as a digital input. When the control input is ON, the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the output will remain at the last output at the end of the profile until the control input turns OFF.

However, when the "Auto Repeat" object is set to TRUE (1), the lookup table will react in the following way:

When the control input is ON, the output will be changed over a period of time based on the profile in the lookup table. Once the profile has finished (i.e. reached index 11, or an 'Ignored' response), the lookup table will revert back to the first point in the table and Auto Repeat the sequence. This will continue for as long as the input remains ON. Once the input turns OFF, the lookup table sequence will stop and the output of the lookup table is zero.

Note: When the control input is OFF, the output is always at zero. When the input comes ON, the profile will ALWAYS start at position ( $\mathrm{X}_{1}, \mathrm{Y}_{1}$ ) which is 0 output for 0 ms .

When using the lookup table to drive an output based on time, it is mandatory that objects 2330 h Ramp Up and 2331h Ramp Down in the analog output function block be set to zero. Otherwise, the output result will not match the profile as expected. Recall, also, that the AO scaling should be set to match the Y-Axis scaling of the table in order to get a $1: 1$ response of AO Output FV versus LTyz Output Y-Axis PV.

In a time response, the data in object 30z6h LTyz Point X-Axis PV is measured in milliseconds, and object 3yz3h LTyz X-Axis Decimal Digits PV is automatically set to 0 . A minimum value of 1 ms must be selected for all points other than sub-index 1 which is automatically set to [0,0]. The interval time between each point on the X-axis can be set anywhere from 1 ms to 24 hours. [86,400,000 ms]

### 1.6. Programmable Logic Function Block

The programmable logic blocks (LB(3-x)) functions are not used by default.


Figure 12 - Logic Block Objects
This function block is obviously the most complicated of them all, but very powerful. Any LBx (where $X=4$ to 7 ) can be linked with up to three lookup tables, any one of which would be selected only under given conditions. Any three tables (of the available 12) can be associated with the logic, and which ones are used is fully configurable on object $3 \times 01$ LB(3-x) Lookup Table Number.

Should the conditions be such that a particular table (A, B or C) has been selected as described in Section 1.6.2, then the output from the selected table, at any given time, will be passed directly to LB(3-x)'s corresponding sub-index X in read-only mappable object 3320h Logic Block Output PV. The active table number can read from read-only object 3310h Logic Block Selected Table.

Note: In this document, the term $L B(3-x)$ refers to Logic Blocks 1 to 4. Due to the CANopen® Object indices, Logic Block 1 begins at 3401 h where $x$, in this case, is 4 .

Therefore, an LBx allows up to three different responses to the same input, or three different responses to different inputs, to become the control for another function block, such as an analog output. Here, the "Control Source" for the reactive block would be selected to be the 'Programmable Logic Function Block,' as described in Section 1.3.

In order to enable any one of logic blocks, the corresponding sub-index in object 3300h Logic Block Enable must be set to TRUE. They are all disabled by default.

Logic is evaluated in the order shown in Figure 13. Only if a lower indexed table (A, B, C) has not been selected will the conditions for the next table be looked at. The default table is always selected as soon as it is evaluated. It is therefore required that the default table always be the highest index in any configuration.


Figure 13 - Logic Block Flowchart

### 1.6.1. Conditions Evaluation

The first step in determining which table will be selected as the active table is to first evaluate the conditions associated with a given table. Each table has associated with it up to three conditions that can be evaluated. Conditional objects are custom DEFSTRUCT objects defined as shown in Table 13.

Index	Sub-Index	Name	Data Type
$3 \mathrm{xyz}^{*}$	0	Highest sub-index supported	UNSIGNED8
	1	Argument 1 Source	UNSIGNED8
	2	Argument 1 Number	UNSIGNED8
	3	Argument 2 Source	UNSIGNED8
	4	Argument 2 Number	UNSIGNED8
	5	Operator	UNSIGNED8

* Logic Block X Function Y Condition Z, where $X=4$ to $7, Y=A, B$ or $C$, and $Z=1$ to 3

Table 13 - LB(3-x) Condition Structure Definition
Objects $3 \times 11 \mathrm{~h}, 3 \times 12 \mathrm{~h}$ and $3 \times 13 \mathrm{~h}$ are the conditions evaluated for selecting Table A . Objects $3 \times 21 \mathrm{~h}, 3 \times 22 \mathrm{~h}$ and $3 \times 23 \mathrm{~h}$ are the conditions evaluated for selecting Table B. Objects $3 \times 31 \mathrm{~h}, 3 \times 32 \mathrm{~h}$ and $3 \times 33 \mathrm{~h}$ are the conditions evaluated for selecting Table C.

Argument 1 is always a logical output from another function block, as listed in Table 4. As always, the input is a combination of the functional block objects 3xyzh sub-index 1 "Argument 1 Source" and "Argument 1 Number."

Argument 2 on the other hand, could either be another logical output such as with Argument 1, OR a constant value set by the user. To use a constant as the second argument in the operation, set "Argument 2 Source" to 'Constant Function Block', and "Argument 2 Number" to the desired sub-index. When defining the constant, make sure it uses the same resolution (decimal digits) as the Argument 1 input.

Argument 1 is evaluated against Argument 2 based on the "Operator" selected in sub-index 5 of the condition object. The options for the operator are listed in Table 14, and the default value is always 'Equal' for all condition objects.

Value	Meaning
$\mathbf{0}$	$=$, Equal
1	$!=$, Not Equal
2	$>$, Greater Than
3	>=, Greater Than or Equal
4	<, Less Than
5	<=, Less Than or Equal

Table 14 - LB(3-x) Condition Operator Options
By default, both arguments are set to 'Control Source Not Used' which disables the condition, and automatically results in a value of N/A as the result. Although is generally considered that each condition will be evaluated as either TRUE or FALSE, the reality is that there could be four possible results, as described in Table 15.

Value	Meaning	Reason
0	False	(Argument 1) Operator (Argument 2) = False
1	True	(Argument 1) Operator (Argument 2) = True
2	Error	Argument 1 or 2 output was reported as being in an error state
3	Not Applicable	Argument 1 or 2 is not available (i.e. set to 'Control Source Not Used')

Table 15 - LB(3-x) Condition Evaluation Results

### 1.6.2. Table Selection

In order to determine if a particular table will be selected, logical operations are performed on the results of the conditions as determined by the logic in Section 1.6.1. There are several logical combinations that can be selected, as listed in Table 16. The default value for object 3x02h LB(3x) Function Logical Operator is dependent on the sub-index. For sub-index 1 (Table A) and 2 (Table B), the 'Cnd1 And Cnd2 And Cnd3' operator is used, whereas sub-index 3 (Table C) is setup as the "Default Table" response.

Value	Meaning
0	Default Table
1	Cnd1 And Cnd2 And Cnd3
2	Cnd1 Or Cnd2 Or Cnd3
3	(Cnd1 And Cnd2) Or Cnd3
4	(Cnd1 Or Cnd2) And Cnd3

Table 16 - LB(3-x) Function Logical Operator Options
Not every evaluation is going to need all three conditions. The case given in the earlier section, for example, only has one condition listed, i.e. that the Engine RPM be below a certain value. Therefore, it is important to understand how the logical operators would evaluate an Error or N/A result for a condition, as outlined in Table 17.

Logical Operator	Select Conditions Criteria		
Default Table	Associated table is automatically selected as soon as it is evaluated.		
Cnd1 And Cnd2 And Cnd3	Should be used when two or three conditions are relevant, and all   must be True to select the table.		
	If any condition equals False or Error, the table is not selected.		
	An N/A is treated like a True.		
If all three conditions are True (or N/A), the table is selected.			
	If((Cnd1==True) \&\&(Cnd2==True)\&\&(Cnd3==True)) Then Use Table		
Cnd1 Or Cnd2 Or Cnd3	Should be used when only one condition is relevant. Can also be   used with two or three relevant conditions.		
	If any condition is evaluated as True, the table is selected.   Error or N/A results are treated as False		
	If((Cnd1==True) \\| (Cnd2==True) $\\|$ (Cnd3==True)) Then Use Table		


| (Cnd1 And Cnd2) Or Cnd3 | To be used only when all three conditions are relevant. <br> If both Condition 1 and Condition 2 are True, OR Condition 3 is True, the table is selected. Error or N/A results are treated as False <br> If ((Cnd1==True)\&\&(Cnd2==True)) \|| (Cnd3==True) ) Then Use Table |
| :---: | :---: |
| (Cnd1 Or Cnd2) And Cnd3 | To be used only when all three conditions are relevant. <br> If Condition 1 And Condition 3 are True, OR Condition 2 And Condition 3 are True, the table is selected. Error or N/A results are treated as False <br> If ( ((Cnd1==True) \||(Cnd2==True)) \&\& (Cnd3==True) ) Then Use Table |

## Table 17 - LB(3-x) Conditions Evaluation Based on Selected Logical Operator

If the result of the function logic is TRUE, then the associated lookup table (see object $4 \times 01 \mathrm{~h}$ ) is immediately selected as the source for the logic output. No further conditions for other tables are evaluated. For this reason, the 'Default Table' should always be setup as the highest letter table being used (A, B or C) If no default response has been setup, the Table A automatically becomes the default when no conditions are true for any table to be selected. This scenario should be avoided whenever possible so as to not result in unpredictable output responses.

The table number that has been selected as the output source is written to sub-index $X$ of readonly object 4010 h Logic Block Selected Table. This will change as different conditions result in different tables being used.

### 1.6.3. Logic Block Output

Recall that Table $Y$, where $Y=A, B$ or $C$ in the $L B(3-x)$ function block does NOT mean lookup table 1 to 3. Each table has object $3 x 01 \mathrm{~h}$ LB(3-x) Lookup Table Number which allows the user to select which lookup tables they want associated with a particular logic block. The default tables associated with each logic block are listed in Table 18.

Programmable   Logic Block Number	Table A - Lookup   Table Block Number	Table B - Lookup   Table Block Number	Table C - Lookup   Table Block Number
1	1	2	3
2	4	5	6
3	7	8	9
4	10	11	12

Table 18 - LB(3-x) Default Lookup Tables
If the associated Lookup Table YZ (where YZ equals 3310h sub-index $X$ ) does not have an "XAxis Source" selected, then the output of LB(3-x) will always be "Not Available" so long as that table is selected. However, should LTyz be configured for a valid response to an input, be it Data or Time, the output of the LTyz function block (i.e. the Y-Axis data that has been selected based on the $X$-Axis value) will become the output of the $L B(3-x)$ function block so long as that table is selected.

The LB(3-x) output is always setup as a percentage, based on the range of the Y-Axis for the associated table (see Section 1.5.2) It is written to sub-index $X$ of read-only object 3320h Logic Block Output PV with a resolution of 1 decimal place.

### 1.7. Math Function Block

There are six mathematic function blocks that allow the user to define basic algorithms. Math function block $Z=1$ to 6 will be enabled based on sub-index $Z$ in object 4000h Math Enable.


Figure 14 - Math Function Block Objects
A math function block can take up to six input signals, as listed in Table 4 in Section 1.5. Each input is then scaled according the associated scaling and gain objects. A "Math Input $X$ " is determined by the corresponding sub-index $X=1$ to 6 of the objects 4y00h Math Y Input Source and 4y01h Math Y Input Number. Here, $\mathrm{y}=1$ to 6; corresponding the Math 1- Math 6.

Inputs are converted into a percentage value based on objects 4y20h Math Y Scaling 1 FV and 4y22h Math Y Scaling 2 FV. Before being used in the calculation, these objects apply the resolution shift defined by object 4y02h Math Y Decimal Digits FV. As with any other function block using a control source for the X-Axis in a conversion, the scaling objects should be selected to match the values in the control's corresponding objects as per Table 6.

For additional flexibility, the user can also adjust object 4y40h Math Y Input Gain. This object has a fixed decimal digit resolution of 2 , and a range of -100 to 100 . By default, each input has a gain of 1.0 .

For example, in the case where the user may want to combine two inputs such that a joystick (Input 1) is the primary control of an output, but the speed can be incremented or decremented based on a potentiometer (Input 2), it may be desired that $75 \%$ of the scale is controlled by the joystick position, while the potentiometer can increase or decrease the min/max output by up to $25 \%$. In this case, Input 1 would have a gain of 0.75 , while Input 2 uses 0.25 . The resulting addition will give a command from 0 to $100 \%$ based on the combined positions of both inputs.

For each input pair, the appropriate arithmetic or logical operation is performed on the two inputs, $\operatorname{InA}$ and $\operatorname{InB}$, according the associated function in sub-index of $\operatorname{InB}$ in object $4 y 50 \mathrm{~h}$ Math Y Operator. The list of selectable function operations is defined in Table 19.

0	$=$	True when InA Equals InB
1	!=	True when InA Not Equal InB
2	>	True when InA Greater Than InB
3	>=	True when InA Greater Than or Equal InB
4	<	True when InA Less Than InB
5	<=	True when InA Less Than or Equal InB
6	OR	True when $\ln \mathrm{A}$ or $\ln \mathrm{B}$ is True
7	NOR	True when $\ln \mathrm{A}$ and $\ln B$ are False
8	AND	True when $\ln A$ and $\ln B$ are True
9	NAND	True when $\operatorname{In} \mathrm{A}$ and $\operatorname{InB}$ are not both True
10	XOR	True when $\ln \mathrm{A} / \mathrm{InB}$ is True, but not both
11	XNOR	True when $\operatorname{InA}$ and $\operatorname{InB}$ are both True or False
12	+	Result $=\ln A$ plus $\ln B$
13	-	Result = InA minus InB
14	x	Result $=\ln A$ times $\ln B$
15	1	Result $=\ln A$ divided by $\ln B$
16	MIN	Result = Smallest of InA and InB
17	MAX	Result = Largest of $\operatorname{In} A$ and $\operatorname{InB}$

Table 19 - Object 4y50h Math Function Operators
For Function 1, $\operatorname{InA}$ and $\operatorname{InB}$ are Math Inputs 1 and 2, respectively.
For Function 2, $\operatorname{In} A$ and $\operatorname{In} B$ are Math Inputs 3 and 4 , respectively.
For Function 3, $\operatorname{InA}$ and $\operatorname{InB}$ are Math Inputs 5 and 6, respectively.
Exclusively within a Math Block, there is a third control parameter: Object 4y02h, Math $\mathbf{Y}$ Function Number. This parameter allows for the result of any Function (1, 2 or 3 ) to be the input to any Math Input $\mathbf{Y}$ within the same Math Block. Therefore, Math Y Input Source must be a Math Block and Math Y Input Number must be the same number as being configured. When these four parameters match, if Math Y Function Number is set to 1, 2, or 3, the respective input will be the result of the Function selected. By default, Math Y Function Number is set to 0 - in which case this parameter is ignored and uses the Math Block output result. These functions can only be used within the Math Block. They can not be used for other Math Blocks or logic blocks.

This allows for more versatility within the Math Block. For a valid result in each Function, both inputs must be non-zero value (other than 'Control Source Not Used'). Otherwise, the corresponding Function is ignored. Furthermore, for a valid/expected output result in each Math Block, it is necessary to keep in mind how the Functions link to one another within the Math Block. As an example, consider all 6 inputs to be CANopen® Messages 1 to 6 (thus using all 3 Functions). Since all 3 functions are used but Function 3 has no relation to Function 1 or 2, the result of the Math Block will be the result of Function 3, thus, ignoring Functions 1 and 2.

For logical operators (6 to 11), any SCALED input greater than or equal to 0.5 is treated as a TRUE input. For logic output operators ( 0 to 11), the result of the calculation for the function will always be 0 (FALSE) or 1 (TRUE).

Error data (i.e. input measured out of range) is always treated as a 0.0 input into the function.

For the arithmetic functions (12 to 17), it is recommended to scale the data such that the resulting operation will not exceed full scale (0 to 100\%) and saturate the output result.

When dividing, a zero $\ln B$ value will always result is a zero output value for the associated function. When subtracting, a negative result will always be treated as a zero, unless the function is multiplied by a negative one, or the inputs are scaled with a negative coefficient first.

The resulting final mathematical output calculation is in the appropriate physical units using object 4021h Math Output Scaling 1 PV and 4023h Math Output Scaling 2 PV. These objects are also considered the Min and Max values of the Math Block output and apply the resolution shift defined by object 4032h Math Output Decimal Digits PV. The result is written to read-only object 4030h Math Output PV. These scaling objects should also be taken into account when the Math Function is selected as the input source for another function block, as outlined in Table 6.

### 1.8. Miscellaneous Function Block

There are some other objects available which have not yet been discussed, or mentioned briefly in passing (i.e. constants.) These objects are not necessarily associated with one another, but are all discussed here.


Figure 15 - Miscellaneous Objects

## Extra RPDO Messages

Objects 2500h Extra Control Received PV, 2502h EC Decimal Digits PV, 2502h EC Scaling 1 PV and EC Scaling 2 PV have been mentioned in Section 1.3, Table 5. These objects allow for additional data received on a CANopen® RPDO to be mapped independently to various function blocks as a control source. For example, a PID loop must have two inputs (target and feedback), so one of them has to come from the CAN bus. The scaling objects are provided to define the limits of the data when it is used by another function block, as shown in Table 6.

## Constant Values

Object 5010h Constant Field Value is provided to give the user the option for a fixed value that can be used by other function blocks. Sub-index 1 is fixed as FALSE (0) and sub-index 2 is always TRUE (1). There are 13 other sub-indexes provided for user selectable values.

The constants are read as 32-bit real (float) data, so no decimal digit object is provided. When setting up the constant, make sure to do it with the resolution of the object that will be compared with it.

The False/True constants are provided primarily to be used with the logic block. The variable constants are also useful with the logic or math blocks, and they can also be used as a setpoint target for a PID control block.

## Automatic Update of Objects

Object 5550h Enable Automatic Updates allows for the controller to automatically update the objects related to the output to defaults when it is changed. By default, this object is set to TRUE, in which case the objects are set to their default values depending on the type selected.

On the other hand, when this object is FALSE, the objects are not set to defaults and are left with the same values previous to changing the type. In this case, these are to be configured manually.

## Startup

The last object 5555h Start in Operational is provided as a 'cheat' when the unit is not intended to work with a CANopen® network (i.e. a stand-alone control), or is working on a network comprised solely as slaves so the OPERATION command will never be received from a master. By default this object is disabled (FALSE).

When using the CAN-10OUT as a stand-alone controller where 5555 h is set to TRUE, it is recommended to disable all TPDOs (set the Event Timer to zero) so that it does not run with a continuous CAN error when not connected to a bus.

### 1.9. Dimensions and Pinout

The Ten Output Valve Controller is packaged in a plastic housing from TE Deutsch. The assembly carries an IP67 rating.


## HOUSING DIMENSIONS

Housing Material: High Temperature Nylon (Black)

3D VIEW
Housing with 24 Pin Receptacle


FRONT VIEW 24-PIN RECEPTACLE (NOT TO SCALE)


Dimensions: inches [mm] excluding mating plug(s)

Figure 16 - Housing Dimensions

Grey Connector		Black Connector	
Pin \#	Function	Pin \#	Function
1	Output Return 5	1	Analog Output 6 +
2	Output Return 4	2	Analog Output 7 +
3	Output Return 3	3	Analog Output 8 +
4	Output Return 2	4	Analog Output 9 +
5	Output Return 1	5	Analog Output 10 +
6	Power -	6	CAN_H
7	Power +	7	CAN_L
8	Analog Output 1 +	8	Output Return 10
9	Analog Output 2 +	9	Output Return 9
10	Analog Output 3 +	10	Output Return 8
11	Analog Output 4 +	11	Output Return 7
12	Analog Output 5 +	12	Output Return 6

Table 20 - Connector Pinout

### 1.10. Installation Instructions

## NOTES \& WARNINGS

- Do not install near high-voltage or high-current devices.
- Note the operating temperature range. All field wiring must be suitable for that temperature range.
- Install the unit with appropriate space available for servicing and for adequate wire harness access (15 cm ) and strain relief ( 30 cm ).
- Do not connect or disconnect the unit while the circuit is live, unless the area is known to be nonhazardous.


## MOUNTING

The module is designed for mounting on the valve block. If it is mounted without an enclosure, the controller should be mounted horizontally with connectors facing left or right, or with the connectors facing down, to reduce likelihood of moisture entry.

Mask all labels if the unit is to be repainted, so label information remains visible.
Mounting legs include holes sized for $1 / 4$ " bolts. The bolt length will be determined by the end-user's mounting plate thickness. Typically 20 mm ( $3 / 4 \mathrm{inch}$ ) is adequate.

If the module is mounted away from the valve block, no wire or cable in the harness should exceed 30 meters in length. The power input wiring should be limited to 10 meters.

## CONNECTIONS

Use the following TE Deutsch mating plugs to connect to the integral receptacles. Wiring to these mating plugs must be in accordance with all applicable local codes. Suitable field wiring for the rated voltage and current must be used. The rating of the connecting cables must be at least $85^{\circ} \mathrm{C}$. For ambient temperatures below $-10^{\circ} \mathrm{C}$ and above $+70^{\circ} \mathrm{C}$, use field wiring suitable for both minimum and maximum ambient temperature.

Refer to the respective TE Deutsch datasheets for usable insulation diameter ranges and other instructions.

Receptacle Contacts	Mating Sockets as appropriate   (Refer to www.laddinc.com for more information on the   contacts available for this mating plug.)
Mating Connector	DTM06-12SA, DTM06-12SB, 2 wedges WM12S, 24   contacts (0462-201-20141)

## 2. CANOPEN® OBJECT DICTIONARY

The CANopen® object dictionary of the CAN-10OUT Controller is based on CiA device profile DS404 V1.2 (device profile for Closed Loop Controllers). The object dictionary includes Communication Objects beyond the minimum requirements in the profile, as well as several manufacturer-specific objects for extended functionality.

### 2.1. NODE ID and BAUDRATE

By default, the CAN-10OUT Controller ships factory programmed with a Node ID $=127$ (0x7F) and with Baud rate $=125 \mathrm{kbps}$.

### 2.1.1. LSS Protocol to Update

The only means by which the Node-ID and Baud rate can be changed is to use Layer Settling Services (LSS) and protocols as defined by CANopen® standard DS-305.

Follow the steps below to configure either variable using LSS protocol. If required, please refer to the standard for more detailed information about how to use the protocol.

### 2.1.1.1. $\quad$ Setting Node-ID

- Set the module state to LSS-configuration by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	$0 \times 04$	(cs=4 for switch state global)
Data 1	$0 \times 01$	(switches to configuration state)

- Set the Node-ID by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	$0 \times 11$	(cs=17 for configure node-id)
Data 1	Node-ID	(set new Node-ID as a hexadecimal number)

- The module will send the following response (any other response is a failure).

Item	Value
COB-ID	0x7E4
Length	3
Data 0	$0 \times 11 \quad$ (cs=17 for configure node-id)
Data 1	$0 \times 00$
Data 2	$0 \times 00$

- Save the configuration by sending the following message:

Item	Value	
COB-ID	0x7E5	
Length	1	
Data 0	$0 x 17 \quad$ (cs=23 for store configuration)	

- The module will send the following response (any other response is a failure):

Item	Value
COB-ID	$0 \times 7 \mathrm{E} 4$
Length	3
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)
Data 1	$0 \times 00$
Data 2	$0 \times 00$

- Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)

Item	Value	
COB-ID	0x7E5	
Length	2	
Data 0	$0 \times 04$	(cs=4 for switch state global)
Data 1	$0 \times 00$	(switches to waiting state)

### 2.1.1.2. Setting Baudrate

- Set the module state to LSS-configuration by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	$0 \times 04$	(cs=4 for switch state global)
Data 1	$0 \times 01$	(switches to configuration state)

- Set the baudrate by sending the following message:

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	3	
Data 0	$0 \times 13$	(cs=19 for configure bit timing parameters)
Data 1	$0 \times 00$	(switches to waiting state)
Data 2	Index	(select baudrate index per Table 21)


Index	Bit Rate
$\mathbf{0}$	$1 \mathrm{Mbit} / \mathrm{s}$
$\mathbf{1}$	$800 \mathrm{kbit} / \mathrm{s}$
$\mathbf{2}$	$500 \mathrm{kbit} / \mathrm{s}$
$\mathbf{3}$	$250 \mathrm{kbit} / \mathrm{s}$
$\mathbf{4}$	$125 \mathrm{kbit} / \mathrm{s} \quad$ (default)
$\mathbf{5}$	reserved $\quad$ (100 kbit/s)
$\mathbf{6}$	$50 \mathrm{kbit} / \mathrm{s}$
$\mathbf{7}$	$20 \mathrm{kbit} / \mathrm{s}$
$\mathbf{8}$	$10 \mathrm{kbit} / \mathrm{s}$

Table 21 - LSS Baudrate Indices

- The module will send the following response (any other response is a failure):

Item	Value
COB-ID	$0 \times 7 E 4$
Length	3
Data 0	$0 \times 13 \quad$ (cs=19 for configure bit timing parameters)
Data 1	$0 \times 00$
Data 2	$0 \times 00$

- Activate bit timing parameters by sending the following message:

Item	Value
COB-ID	0x7E5
Length	3
Data 0	0x15 $\quad$ (cs=19 for activate bit timing parameters)
Data 1	<delay_Isb>
Data 2	<delay_msb>

The delay individually defines the duration of the two periods of time to wait until the bit timing parameters switch is done (first period) and before transmitting any CAN message with the new bit timing parameters after performing the switch (second period). The time unit of switch delay is 1 ms.

- Save the configuration by sending the following message (on the NEW baudrate):

Item	Value	
COB-ID	$0 \times 7 \mathrm{E} 5$	
Length	1	
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)	

- The module will send the following response (any other response is a failure):

Item	Value
COB-ID	$0 \times 7 \mathrm{E} 4$
Length	3
Data 0	$0 \times 17 \quad$ (cs=23 for store configuration)
Data 1	$0 \times 00$
Data 2	$0 \times 00$

- Set the module state to LSS-operation by sending the following message: (Note, the module will reset itself back to the pre-operational state)

Item	Value	
COB-ID	$0 \times 7 E 5$	
Length	2	
Data 0	$0 \times 04$	(cs=4 for switch state global)
Data 1	$0 \times 00$	(switches to waiting state)

The following screen capture (left) shows the CAN data was sent (7E5h) and received (7E4h) by the tool when the baudrate was changed to 250 kbps using the LSS protocol. The other image (right) shows what was printed on an example debug RS-232 menu while the operation took place.

Between CAN Frame 98 and 99, the baudrate on the CAN Scope tool was changed from 125 to 250 kbps.


### 2.2. COMMUNICATION OBJECTS (DS-301 and DS-404)

The communication objects supported by the CAN-10OUT Controller are listed in the following table. A more detailed description of some of the objects is given in the following subchapters. Only those objects that have device-profile specific information are described. For more information on the other objects, refer to the generic CANopen® protocol specification DS-301.

Index   (hex)	Object	Object Type	Data Type	Access	PDO   Mapping
1000	Device Type	VAR	UNSIGNED32	RO	No
1001	Error Register	VAR	UNSIGNED8	RO	No
1002	Manufacturer Status Register	VAR	UNSIGNED32	RO	No
1003	Pre-Defined Error Field	ARRAY	UNSIGNED32	RO	No
100C	Guard Time	VAR	UNSIGNED16	RW	No
100D	Life Time Factor	VAR	UNSIGNED8	RW	No
1010	Store Parameters	ARRAY	UNSIGNED32	RW	No
1011	Restore Default Parameters	ARRAY	UNSIGNED32	RW	No
1016	Consumer Heartbeat Time	ARRAY	UNSIGNED32	RW	No
1017	Producer Heartbeat Time	VAR	UNSIGNED16	RW	No
1018	Identity Object	RECORD		RO	No
1020	Verify Configuration	ARRAY	UNSIGNED32	RO	No
1029	Error Behaviour	ARRAY	UNSIGNED8	RW	No
1400	RPDO1 Communication Parameter	RECORD		RW	No
1401	RPDO2 Communication Parameter	RECORD		RW	No
1402	RPDO3 Communication Parameter	RECORD		RW	No
1403	RPDO4 Communication Parameter	RECORD		RW	No
1404	RPDO5 Communication Parameter	RECORD		RW	No
1405	RPDO6 Communication Parameter	RECORD		RW	No
1600	RPDO1 Mapping Parameter	RECORD		RO	No
1601	RPDO2 Mapping Parameter	RECORD		RO	No
1602	RPDO3 Mapping Parameter	RECORD		RO	No
1603	RPDO4 Mapping Parameter	RECORD		RO	No
1604	RPDO5 Mapping Parameter	RECORD		RO	No
1605	RPDO6 Mapping Parameter	RECORD		RO	No
1800	TPDO1 Communication Parameter	RECORD		RW	No
1801	TPDO2 Communication Parameter	RECORD		RW	No
1802	TPDO3 Communication Parameter	RECORD		RW	No
1803	TPDO4 Communication Parameter	RECORD		RW	No
1804	TPDO5 Communication Parameter	RECORD		RW	No
1805	TPDO6 Communication Parameter	RECORD		RW	No
1 A 00	TPDO1 Mapping Parameter	RECORD		RW	No
1A01	TPDO2 Mapping Parameter	RECORD		RW	No
1 A02	TPDO3 Mapping Parameter	RECORD		RW	No
1 A03	TPDO4 Mapping Parameter	RECORD		RW	No
1A04	TPDO5 Mapping Parameter	RECORD		RW	No
1 A 05	TPDO6 Mapping Parameter	RECORD		RW	No

### 2.2.1. Object 1000h: Device Type

This object contains information about the device type as per device profile DS-404. The 32-bit parameter is divided into two 16-bit values, showing General and Additional information as shown below.
MSB

Additional Information $=0 \times E 01 C$	General Information $=0 \times 0194$ (404)

DS-404 defines the Additional Information field in the following manner:
0000h = reserved
0001h = digital input block
0002h = analog input block
0004h = digital output block
0008h = analog output block
0010h = controller block (aka PID)
0020h = alarm block
0040h ... 0800h = reserved
1000h = reserved
2000h = lookup table block (manufacturer-specific)
4000h = programmable logic block (manufacturer-specific)
8000h = miscellaneous block (manufacturer-specific)
Object Description

Index	1000h
Name	Device Type
Object Type	VAR
Data Type	UNSIGNED32

Entry Description

Access	RO
PDO Mapping	No
Value Range	0xE01F0194
Default Value	0xE01F0194

### 2.2.2. Object 1001h: Error Register

This object is an error register for the device. Any time there is an error detected by the CAN100 UT Controller, the Generic Error Bit (bit 0 ) is set. Only if there is no errors in the module will this bit will be cleared. No other bits in this register are used by the CAN-10OUT Controller.

Object Description

Index	1001 h
Name	Error Register
Object Type	VAR
Data Type	UNSIGNED8

## Entry Description

Access	RO
PDO Mapping	No
Value Range	00h or 01h
Default Value	0

### 2.2.3. Object 1002h: Manufacturer Status Register

This object is used for manufacturer debug purposes.

### 2.2.4. Object 1003h: Pre-Defined Error Field

This object provides an error history by listing the errors in the order that they have occurred. An error is added to the top of the list when it occurs, and is immediately removed when the error condition has been cleared. The latest error is always at sub-index 1, with sub-index 0 containing the number of errors currently in the list. When the device is in an error-free state, the value of subindex 0 is zero.

The error list may be cleared by writing a zero to sub-index 0, which will clear all errors from the list, regardless of whether or not they are still present. Clearing the list does NOT mean that the module will return to the error-free behaviour state if at least one error is still active.

The CAN-10OUT Controller has a limitation of a maximum of 4 errors in the list. If the device registers more errors, the list will be truncated, and the oldest entries will be lost.

The error codes stored in the list are 32-bit unsigned numbers, consisting of two 16-bit fields. The lower 16 -bit field is the EMCY error code, and the higher 16 -bit field is a manufacturer-specific code. The manufacturer-specific code is divided into two 8-bit fields, with the higher byte indicating the error description, and the lower byte indicating the channel on which the error occurred.

MSB
LSB
Error Description $\quad$ Channel-ID $\quad$ EMCY Error Code
If node-guarding is used (not recommended per the latest standard) and a lifeguard event occurs, the manufacturer-specific field will be set to $0 \times 1000$. On the other hand, if a heartbeat consumer fails to be received within the expected timeframe, the Error Description will be set to $0 x 80$ and the Channel-ID (nn) will reflect the Node-ID of the consumer channel that was not producing. In this case, the manufacturer-specific field will therefore be 0x80nn. In both cases, the corresponding EMCY Error Code will be the Guard Error 0x8130.

When an analog output is not working as described in Section 1.3, then the Error Description will reflect what channel(s) is at fault using the following table. Also, if an RPDO is not received within the expected "Event Timer" period, an RPDO timeout will be flagged. Table 22 outlines the resulting Error Field Codes and their meanings.

Error Field Code	Error Description	Meaning	ID	Meaning	$\begin{aligned} & \hline \text { EMCY } \\ & \text { Code } \end{aligned}$	Meaning
00000000h	EMCY Error Reset (fault no longer active)					
1001F002h	10h	Sensor Break (Open Circuit on AO)	01h	Analog Output 1	F002h	Output Overload
1002F002h	10h	Sensor Break	02h	Analog Output 2	F002h	Output Overload
1003F002h	10h	Sensor Break	03h	Analog Output 3	F002h	Output Overload
1004F002h	10h	Sensor Break	04h	Analog Output 4	F002h	Output Overload
1005F002h	10h	Sensor Break	05h	Analog Output 5	F002h	Output Overload
1006F002h	10h	Sensor Break	06h	Analog Output 6	F002h	Output Overload
1007F002h	10h	Sensor Break	07h	Analog Output 7	F002h	Output Overload
1008F002h	10h	Sensor Break	08h	Analog Output 8	F002h	Output Overload
1009F002h	10h	Sensor Break	09h	Analog Output 9	F002h	Output Overload
100AF002h	10h	Sensor Break	OAh	Analog Output 10	F002h	Output Overload
20003000h	20h	Positive Overload (Vps Overvoltage)	00h	Unspecified	3000h	Generic Voltage
40003000h	40h	Negative Overload (Vps Undervoltage)	00h	Unspecified	3000h	Generic Voltage
00008100h	00h	RPDO Timeout	00h	Unspecified	8100h	Communication - generic
10008130h	10h	Lifeguard Event	00h	Unspecified	8130h	Lifeguard/Heartbeat Error
80nn8130h	80h	Heartbeat Timeout	nn	Node-ID	8130h	Lifeguard/Heartbeat Error
00008140h	00h	Bus OFF Event	00h	Unspecified	8400h	Bus OFF Recovery

Table 22 - Pre-Defined Error Field Codes

## Object Description

Index	1003 h
Name	Pre-Defined Error Field
Object Type	ARRAY
Data Type	UNSIGNED32

## Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RW
PDO Mapping	No
Value Range	0 to 15
Default Value	0


Sub-Index	1h to 15
Description	Standard error field
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

### 2.2.5. Object 100Ch: Guard Time

The objects at index 100Ch and 100Dh shall indicate the configured guard time respective to the life time factor. The life time factor multiplied with the guard time gives the life time for the life guarding protocol described in DS-301. The Guard Time value shall be given in multiples of ms, and a value of 0000 h shall disable the life guarding.

It should be noted that this object, and that of 100Dh are only supported for backwards compatibility. The standard recommends that newer networks do not use the life guarding protocol, but rather heartbeat monitoring instead. Both life guarding and heartbeats can NOT be active simultaneously.

Object Description

Index	100Ch
Name	Guard Time
Object Type	VAR
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 65535
Default Value	0

### 2.2.6. Object 100Dh: Lifetime Factor

The life time factor multiplied with the guard time gives the life time for the life guarding protocol. A value of 00 h shall disable life guarding.

Object Description

Index	100Dh
Name	Life time factor
Object Type	VAR
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 255
Default Value	0

### 2.2.7. Object 1010h: Store Parameters

This object supports the saving of parameters in non-volatile memory. In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate sub-index. The signature is "save".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

$e$	$v$	$a$	$s$
65 h	76 h	61 h	73 h

On reception of the correct signature to an appropriate sub-index, the CAN-10OUT Controller will store the parameters in non-volatile memory, and then confirm the SDO transmission.

By read access, the object provides information about the module's saving capabilities. For all subindexes, this value is 1 h , indicating that the CAN-10OUT Controller saves parameters on command. This means that if power is removed before the Store object is written, changes to the Object Dictionary will NOT have been saved in the non-volatile memory, and will be lost on the next power cycle.

## Object Description

Index	1010h
Name	Store Parameters
Object Type	ARRAY
Data Type	UNSIGNED32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	8
Default Value	8


Sub-Index	1h
Description	Save all parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 65766173$ (write access)   1h   (read access)
Default Value	1h


Sub-Index	2 h
Description	Save communication parameters
Access	RW
PDO Mapping	No
Value Range	0x65766173 (write access)   1h   (read access)
Default Value	1h


Sub-Index	3h
Description	Save application parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 65766173$ (write access)   1h   (read access)
Default Value	1h $\quad$


Sub-Index	4h
Description	Save manufacturer parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 65766173$ (write access)   1h   (read access)
Default Value	1 h

### 2.2.8. Object 1011h: Restore Parameters

This object supports the restoring of the default values for the object dictionary in non-volatile memory. In order to avoid restoring of parameters by mistake, the device restores the defaults only when a specific signature is written to the appropriate sub-index. The signature is "load".

The signature is a 32-bit unsigned number, composed of the ASCII codes of the signature characters, according to the following table:
MSB

d	a	0	LSB
64 h	61 h	6 Fh	6 Ch

On reception of the correct signature to an appropriate sub-index, the CAN-10OUT Controller will restore the defaults in non-volatile memory, and then confirm the SDO transmission. The default values are set valid only after the device is reset or power-cycled. This means that the CAN100UT Controller will NOT start using the default values right away, but rather continue to run from whatever values were in the Object Dictionary prior to the restore operation.

By read access, the object provides information about the module's default parameter restoring capabilities. For all sub-indexes, this value is 1 h , indicating that the CAN-100UT Controller restores defaults on command.

Object Description

Index	1011h
Name	Restore Default Parameters
Object Type	ARRAY
Data Type	UNSIGNED32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No


Value Range	4
Default Value	4


Sub-Index	1h
Description	Restore all default parameters
Access	RW
PDO Mapping	No
Value Range	$0 \times 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1 h


Sub-Index	2 h
Description	Restore default communication parameters
Access	RW
PDO Mapping	No
Value Range	$0 x 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1 h


Sub-Index	3h
Description	Restore default application parameters
Access	RW
PDO Mapping	No
Value Range	$0 x 64616$ F6C (write access), 1h (read access)
Default Value	1h


Sub-Index	4 h
Description	Restore default manufacturer parameters
Access	RW
PDO Mapping	No
Value Range	$0 x 64616 F 6 \mathrm{C}$ (write access), 1h (read access)
Default Value	1h

### 2.2.9. Object 1016h: Consumer Heartbeat Time

The CAN-100UT Controller can be a consumer of heartbeat objects for a single module. This object defines the expected heartbeat cycle time for that module, and if set to zero, it is not used. When the object is non-zero, the time is a multiple of 1 ms , and monitoring will start after the reception of the first heartbeat from the module. If the CAN-10OUT Controller fails to receive a heartbeat from a node in the expected timeframe, it will indicate a communication error, and respond as per object 1029h.

	Bits     $31-24$   Value $23-16$	Reserved 00h	Node-ID
Encoded as		Heartbeat time	
		UNSIGNED8	UNSIGNED16

Object Description

Index	1016 h
Name	Consumer heartbeat time
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1


Sub-Index	1h
Description	Consumer heartbeat time
Access	RW
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0

### 2.2.10. Object 1017h: Producer Heartbeat Time

The CAN-10OUT Controller could be configured to produce a cyclical heartbeat by writing a nonzero value to this object. The value will be given in multiples of 1 ms , and a value of 0 shall disable the heartbeat.

Object Description

Index	1017 h
Name	Producer heartbeat time
Object Type	VAR
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	10 to 65535
Default Value	0

### 2.2.11. Object 1018h: Identity Object

The identity object indicates the data of the CAN-10OUT Controller, including vendor id, device id, software and hardware version numbers, and the serial number.

In the Revision Number entry at sub-index 3, the format of the data is as shown below MSB

LSB

Major revision number (object dictionary)	Hardware Revision	Software Version

Object Description

Index	1018 h
Name	Identity Object
Object Type	RECORD
Data Type	Identity Record

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h
Description	Vendor ID
Access	RO
PDO Mapping	No
Value Range	$0 \times 00000055$
Default Value	$0 \times 00000055$ (Axiomatic)


Sub-Index	2h
Description	Product Code
Access	RO
PDO Mapping	No
Value Range	0xAA021211
Default Value	0xAA021211


Sub-Index	3h
Description	Revision Number
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	0x00010201


Sub-Index	4h
Description	Serial Number
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No

### 2.2.12. Object 1020h: Verify Configuration

This object can be read to see what date the software (version identified in object 1018h) was compiled. The date is represented as a hexadecimal value showing day/month/year as per the format below. The time value at sub-index 2 is a hexadecimal value showing the time in a 24 hour clock
MSB

Day (in 1-Byte Hex)	Month (in 1-Byte Hex)	Year (in 2-Byte Hex)
00	00	Time (in 2-Byte Hex)

For example, a value of $0 \times 30042014$ would indicate that the software was compiled on April $30^{\text {th }}$, 2014. A time value of $0 x 00001842$ would indicate it was compiled at $6: 42 \mathrm{pm}$.

Object Description

Index	1020 h
Name	Verify configuration
Object Type	ARRAY
Data Type	UNSIGNED32

## Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2


Sub-Index	1h
Description	Configuration date
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No


Sub-Index	2 h
Description	Configuration time
Access	RO
PDO Mapping	No
Value Range	UNSIGNED32
Default Value	No

### 2.2.13. Object 1029h: Error Behaviour

This object controls the state that the CAN-10OUT Controller will be set into in case of an error of the type associated with the sub-index.

A network fault is flagged when an RPDO is not received within the expected time period defined in the "Event Timer" of the associated communication objects, (see Section 2.2.14 for more information) or if a lifeguard or heartbeat message is not received as expected. Input faults are defined in Section 1.3, and output faults are defined in Section 1.3. Power Supply faults are described in Section 1.8.

For all sub-indexes, the following definitions hold true:
$0=$ Pre-Operational (node reverts to a pre-operational state when this fault is detected)
$1=$ No State Change (node remains in the same state it was in when the fault occurred)
2 = Stopped
(node goes into stopped mode when the fault occurs)

## Object Description

Index	1029 h
Name	Error Behaviour
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5


Sub-Index	1h
Description	Communication Fault
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	0 (Pre-Operational)


Sub-Index	2h
Description	Digital Input Fault (not used)
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)


Sub-Index	3h
Description	Analog Input Fault (not used)
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)


Sub-Index	4h
Description	Digital Output Fault (1 to 10)
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)


Sub-Index	5 h
Description	Analog Output Fault (1 to 10)
Access	RW
PDO Mapping	No
Value Range	See above
Default Value	1 (No State Change)

### 2.2.14. RPDO Behaviour

Per the CANopen® standard DS-301, the following procedure shall be used for re-mapping, and is the same for both RPDOs and TPDOs.
a) Destroy the PDO by setting bit exists (most significant bit) of sub-index 01h of the according PDO communication parameter to 1b
b) Disable mapping by setting sub-index 00 h of the corresponding mapping object to 0
c) Modify the mapping by changing the values of the corresponding sub-indices
d) Enable mapping by setting sub-index 00h to the number of mapped objects
e) Create the PDO by setting bit exists (most significant bit) of sub-index 01h of the according PDO communication parameter to 0b

The CAN-100UT Controller can support up to six RPDO messages. All RPDOs on the CAN100UT Controller use the similar default communication parameters, with the PDO IDs set according to the pre-defined connection set described in DS-301. Most RPDOs do not exist, there is no RTR allowed, they use 11-bit CAN-IDs (base frame valid) and they are all event-driven. While all six have valid default mappings defined (see below) only RPDO1 is enabled by default (i.e. RPDO exists).

RPDO1 Mapping at Object 1600h: Default ID 0x200 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73000110$	Analog Output 1 Process Value
2	$0 \times 73000210$	Analog Output 2 Process Value
3	$0 \times 73000310$	Analog Output 3 Process Value
4	$0 \times 73000410$	Analog Output 4 Process Value

RTPDO2 Mapping at Object 1601h: Default ID 0x300 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73000510$	Analog Output 5 Process Value
2	$0 \times 73000610$	Analog Output 6 Process Value
3	$0 \times 73000710$	Analog Output 7 Process Value
4	$0 \times 73000810$	Analog Output 8 Process Value

RPDO3 Mapping at Object 1602h: Default ID 0x400 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73000910$	Analog Output 9 Process Value
2	$0 \times 73000$ A10	Analog Output 10 Process Value
3	$0 \times 25000110$	Extra Received 1 PV (i.e. Lookup Table 1 X-Axis)
4	$0 x 25000210$	Extra Received 2 PV (i.e. Lookup Table 2 X-Axis)

## RPDO4 Mapping at Object 1603h: Default ID 0x500 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 25000310$	Extra Received 5 PV (i.e. Lookup Table 2 X-Axis)
2	$0 x 25000410$	Extra Received 6 PV (i.e. Lookup Table 3 X-Axis)
3	$0 x 25000510$	Extra Received 7 PV (i.e. Lookup Table 4 X-Axis)
4	$0 x 25000610$	Extra Received 8 PV (i.e. Lookup Table 5 X-Axis)

RPDO5 Mapping at Object 1604h: Default ID 0x200 + Node ID + 1

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 25000710$	Extra Received 9 PV (i.e. Lookup Table 6 X-Axis)
2	$0 \times 25000810$	Extra Received 10 PV (i.e. Lookup Table 7 X-Axis)
3	$0 x 25000910$	Extra Received 11 PV (i.e. Lookup Table 8 X-Axis)
4	$0 x 25000$ A10	Extra Received 12 PV (i.e. Lookup Table 9 X-Axis)

## RPDO6 Mapping at Object 1605h: Default ID 0x300 + Node ID + 1

Sub-Index	Value	Object
0	0	Number of mapped application objects in PDO
1	$0 x 25000 \mathrm{~B} 10$	Extra Received 13 PV (i.e. Math Block 1 X-Axis Source)
2	$0 \times 25000 \mathrm{C} 10$	Extra Received 14 PV (i.e. Math Block 2 X-Axis Source)
3	$0 x 25000 \mathrm{D} 10$	Extra Received 15 PV (i.e. Math Block 3 X-Axis Source)
4	$0 x 25000 \mathrm{E} 10$	Extra Received 16 PV (i.e. Math Block 4 X-Axis Source)

None of them have the timeout feature enabled, i.e. the "Event Timer" on sub-index 5 is set to zero. When this is changed to a non-zero value, if the RPDO has not been received from another node within the time period defined (while in Operational mode), a network fault is activated, and the controller will go to the operational state define in Object 1029h sub-index 4.

## Object Description

Index	1400 h to 1405 h
Name	RPDO communication parameter
Object Type	RECORD
Data Type	PDO Communication Record

## Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5


Sub-Index	1h
Description	COB-ID used by RPDO
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	$40000000 \mathrm{~h}+$ RPDO1 + Node ID   C0000000h + RPDOx + Node-ID


$\boldsymbol{X}$	$\boldsymbol{R P D O x}$ ID
1	0200 h
2	0300 h
3	0400 h
4	0500 h
5	0201 h
6	0301 h

Node-ID = Node-ID of the module. The RPDO COB-IDs are automatically updated if the Node-ID is changed by LSS protocol.
80000000h in the COB-ID indicates that the PDO does not exist (destroyed)
04000000h in the COB-ID indicates that there is no RTR allowed on the PDO

Sub-Index	2 h
Description	Transmission type
Access	RO
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	255 (FFh) = Event Driven


Sub-Index	3h
Description	Inhibit Time
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	0


Sub-Index	4h
Description	Compatibility entry
Access	RW
PDO Mapping	No
Value Range	UNSIGNED8
Default Value	0


Sub-Index	5
Description	Event-timer
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	0

Recall: A non-zero event timer for an RPDO means that it will result in a network fault being flagged if it has not been received within this timeframe while in Operational mode.

### 2.2.15. TPDO Behaviour

The CAN-10OUT Controller can support up to eight TPDO messages. All TPDOs on the CAN100UT Controller use the similar default communication parameters, with the PDO IDs set according to the pre-defined connection set described in DS-301. Most TPDOs do not exist, there is no RTR allowed, they use 11-bit CAN-IDs (base frame valid) and they are all time-driven. While all have valid default mappings defined (see below) only TPDO1 to TPDO3 are enabled by default (i.e. TPDO exists).

## TPD01 Mapping at Object 1A00h: Default ID 0x180 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73300110$	Analog Output 1 Field Value
2	$0 \times 73300210$	Analog Output 2 Field Value
3	$0 \times 73300310$	Analog Output 3 Field Value
4	$0 x 73300410$	Analog Output 4 Field Value

TPDO2 Mapping at Object 1A01h: Default ID 0x280 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73300510$	Analog Output 5 Field Value
2	$0 x 73300610$	Analog Output 6 Field Value
3	$0 \times 73300710$	Analog Output 7 Field Value
4	$0 \times 73300810$	Analog Output 8 Field Value

TPDO3 Mapping at Object 1A02h: Default ID 0x380 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 73300910$	Analog Output 9 Field Value
2	$0 \times 73300$ A10	Analog Output 10 Field Value
3	$0 \times 23700110$	Analog Output 1 Feedback Field Value
4	$0 x 23700210$	Analog Output 2 Feedback Field Value

TPDO4 Mapping at Object 1A03h: Default ID 0x480 + Node ID

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 23700310$	Analog Output 3 Feedback Field Value
2	$0 \times 23700410$	Analog Output 4 Feedback Field Value
3	$0 \times 23700510$	Analog Output 5 Feedback Field Value
4	$0 \times 23700610$	Analog Output 6 Feedback Field Value

TPDO5 Mapping at Object 1A04h: Default ID 0x180 + Node ID + 1

Sub-Index	Value	Object
0	4	Number of mapped application objects in PDO
1	$0 \times 23700710$	Analog Output 7 Feedback Field Value
2	$0 \times 23700810$	Analog Output 8 Feedback Field Value
3	$0 \times 23700910$	Analog Output 9 Feedback Field Value
4	$0 x 23700$ A10	Analog Output 10 Feedback Field Value


Sub-Index	Value	Object
0	2	Number of mapped application objects in PDO
1	$0 \times 50200020$	Power Supply Field Value (measured)
2	$0 \times 50300020$	Processor Temperature Field Value (measured)
3	0	Not used by default
4	0	Not used by default

Since only TPDO1 to TPDO3 have a non-zero value transmission rate (i.e. Event Timer in subindex 5 of communication object), only these TPDOs will be automatically broadcasted when the unit goes into OPERATIONAL mode.

## Object Description

Index	1800h to 1805h
Name	TPDO communication parameter
Object Type	RECORD
Data Type	PDO Communication Record

## Entry Description

Sub-Index	Oh
Description	Number of entries
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5


Sub-Index	1h
Description	COB-ID used by TPDO
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	$40000000 \mathrm{~h}+$ TPDOx + Node-ID   C0000000h + TPDOy + Node-ID


$\boldsymbol{X}$	TPDOx ID	$\boldsymbol{Y}$	TPDOy ID
1	0180 h	4	0480 h
2	0280 h	5	0181 h
3	0380 h	6	0281 h
		7	0381 h
		8	0481 h

Node-ID = Node-ID of the module. The TPDO COB-IDs are automatically updated if the Node-ID is changed by LSS protocol.
80000000h in the COB-ID indicates that the PDO does not exist (destroyed)
04000000h in the COB-ID indicates that there is no RTR allowed on the PDO

Sub-Index	2 h
Description	Transmission type
Access	RO
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	254 (FEh) $=$ Event Driven


Sub-Index	3h
Description	Inhibit Time
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301


Default Value	0


Sub-Index	4h
Description	Compatibility entry
Access	RW
PDO Mapping	No
Value Range	UNSIGNED8
Default Value	0


Sub-Index	5
Description	Event-timer
Access	RW
PDO Mapping	No
Value Range	See value definition in DS-301
Default Value	100 ms (on TPDO1,TPDO2, TPDO3)   Oms (on TPDO4 to TPDO8)

### 2.3. APPLICATION OBJECTS (DS-404)

Index   (hex)	Object	Object   Type	Data Type	Access	PDO   Mapping
6200	DO Write State 1 Output Line	ARRAY	UNSIGNED16	RW	Yes
6202	DO Polarity 1 Output Line	ARRA	UNSIGNED16	RW	No
6250	DO Fault Mode 1 Output Line	ARRAY	UNSIGNED8	RW	No
6260	DO Fault State 1 Output Line	ARRAY	BOOLEAN	RW	No
7300	AO Output Process Value	ARRAY	INTEGER16	RW	Yes
6302	AO Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
6310	AO Output Type	ARRAY	UNSIGNED16	RW	No
7320	AO Output Scaling 1 PV	ARRAY	INTEGER16	RW	No
7321	AO Output Scaling 1 FV	ARRAY	INTEGER16	RW	No
7322	AO Output Scaling 2 PV	ARRAY	INTEGER16	RW	No
7323	AO Output Scaling 2 FV	ARRAY	INTEGER16	RW	No
7330	AO Output Field Value	ARRAY	INTEGER16	RO	Yes
6332	AO Decimal Digits FV	ARRAY	UNSIGNED8	RW	No
6340	AO Fault Mode	ARRAY	UNSIGNED8	RW	No
7341	AO Fault Field Value	ARRAY	INTEGER16	RW	No
7 F50	Received Process Value	ARRAY	INTEGER16	RW	Yes
$6 F 52$	Received Process Value Status	ARRAY	UNSIGNED8	RW	Yes
7450	PID Proportional Band	ARRAY	INTEGER16	RW	No
7452	PID Integral Action Time	ARRAY	INTEGER16	RW	No
7454	PID Derivative Action Time	ARRAY	INTEGER16	RW	No
7456	PID Cycle Time	ARRAY	INTEGER16	RW	No
6458	PID Physical Unit Timing	ARRAY	UNSIGNED32	RO	No
6459	PID Decimal Digits Timing	ARRAY	UNSIGNED8	RW	No

### 2.3.1. Object 6200h: DO Write State 16 Output Line2

This object shall set a single digital output logic state when the corresponding DO is being controlled by a CANopen® Message (per Table 4 in Section 1.3).

Object Description

Index	6200 h
Name	DO Write State 1 Output Line
Object Type	ARRAY
Data Type	BOOLEAN

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5


Sub-Index	1h
Description	DO1-10 Write State
Access	RW
PDO Mapping	Yes
Value Range	0 (OFF) or 1 (ON)
Default Value	0 (OFF)

### 2.3.2. Object 6202h: DO Polarity 16 Output Lines

This object defines the drive state of a single digital output.
Object Description

Index	6202h
Name	DO Polarity 1 Output Line
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h
Description	DO1-10 Polarity
Access	RW
PDO Mapping	No
Value Range	See Table 1
Default Value	0 (normal on/off)

### 2.3.3. Object 6250h: DO Fault Mode 1 Output Line

This object defines how a single digital output shall response when a fault condition is detected on any control input, as described in Table 2.

Object Description

Index	6250h
Name	DO Fault Mode 1 Output Line
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $5 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	DOx Fault Mode
Access	RW
PDO Mapping	No
Value Range	See Table 2
Default Value	1 (apply pre-defined state)

### 2.3.4. Object 6260h: DO Fault State 1 Output Line

This object defines the pre-defined state of a single digital output when a fault condition is present, and the corresponding sub-index in object 6250 h is enabled.

Object Description

Index	6260h
Name	DO Fault State 1 Output Line
Object Type	ARRAY
Data Type	BOOLEAN

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	DOx Fault State
Access	RW
PDO Mapping	No
Value Range	$0(\mathrm{OFF})$ or $1(\mathrm{ON})$
Default Value	$1(\mathrm{ON})$

### 2.3.5. Object 7300h: AO Output Process Value

This object represents the process value of the output. It can be used as an input to the analog output function block when the input has been selected as controlled by a CANopen® Message (per Table 4 in Section 1.3). If, however, object 7F50h is used instead, object 7300h will be updated if and only if object 6F52h has been validated.

## Object Description

Index	7300 h
Name	Analog Output Process Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Process Value
Access	RW
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

### 2.3.6. Object 6302h: AO Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the output control data, which is interpreted with data type Integer16 in the process value object.

Object Description

Index	6302 h
Name	AO Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$0[\mathrm{~mA}]$

### 2.3.7. Object 6310h: AO Output Type

This object specifies the type of analog output, as defined in Table 3.

## Object Description

Index	$6310 h$
Name	AO Output Type
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Type
Access	RW
PDO Mapping	No
Value Range	See Table 3
Default Value	20 (current)

### 2.3.8. Object 7320h: AO Output Scaling 1 PV

This object defines the minimum value of the input, and should be specified to equal the corresponding scaling object of the control source, as outlined in Table 6. It will be scaled in the physical unit of the control source. The resolution will ALWAYS be dependent on object 6302h AO Decimal Digits PV, even when the output is not being controlled directly by the AO Output PV object 7300 h . This object must always be smaller than object 7322 h AO Output Scaling 2 PV.

Object Description

Index	7320h
Name	AO Output Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	See Table 6
Default Value	$500[\mathrm{~mA}]$

### 2.3.9. Object 7321h: AO Output Scaling 1 FV

This object defines the output field value when the input data is at or below the AO Output Scaling 1 PV value as shown in Figure 5. It will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332h AO Decimal Digits FV. The value can be set anywhere within the allowable output range as outlined in Table 3. This value can be set higher than object 7323h AO Output Scaling 2 FV for an inverse response (i.e. decreasing) to an increasing input.

Object Description

Index	7321h
Name	AO Output Scaling 1 FV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Scaling 1 FV
Access	RW
PDO Mapping	No
Value Range	Dependent on type (see Table 3)
Default Value	$0[\mathrm{~mA}]$

### 2.3.10. Object 7322h: AO Output Scaling 2 PV

This object defines the maximum value of the input, and should be specified to equal the corresponding scaling object of the control source, as outlined in Table 6. It will be scaled in the physical unit of the control source. The resolution will ALWAYS be dependent on object 6302h AO Decimal Digits PV, even when the output is not being controlled directly by the AO Output PV object 7300 h . This object must always be larger than object 7322h AO Output Scaling 2 PV.

Object Description

Index	7322h
Name	AO Output Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Scaling 2 PV
Access	RW
PDO Mapping	No
Value Range	See Table 6
Default Value	$4500[\mathrm{mV}]$

### 2.3.11. Object 7323h: AO Output Scaling 2 FV

This object defines the output field value when the input data is at or above the AO Output Scaling 2 PV value as shown in Figure 5. It will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332h AO Decimal Digits FV. The value can be set anywhere within the allowable output range as outlined in Table 3. This value can be set lower than object 7321 h AO Output Scaling 1 FV for an inverse response (i.e. decreasing) to an increasing input.

Object Description

Index	7323h
Name	AO Output Scaling 2 FV
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Scaling 2 FV
Access	RW
PDO Mapping	No
Value Range	Dependent on type (see Table 3)
Default Value	$1500[\mathrm{~mA}]$

### 2.3.12. Object 7330h: AO Output Field Value

This object represents the target output drive field value as a result of the output logic described in Section 1.3, and the scaling applied as shown in Figure 5. It is defined in the physical unit of the output dependent on type, as outlined in Table 3. The resolution of the object is defined in object 6332h AO Decimal Digits FV.

Object Description

Index	7330h
Name	Analog Output Field Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Field Value
Access	RO
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

### 2.3.13. Object 6332h: AO Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the output data, which is interpreted with data type Integer16 in the field value object.

Object Description

Index	6332 h
Name	AO Decimal Digits FV
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Decimal Digits FV
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$0[\mathrm{~mA}]$

### 2.3.14. Object 6340h: AO Fault Mode

This object defines how an analog output shall response when a fault condition is detected on any control input, as described in Table 10.

Object Description

Index	6340h
Name	AO Fault Mode
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Fault Mode
Access	RW
PDO Mapping	No
Value Range	See Table 10
Default Value	1 (apply pre-defined FV)

### 2.3.15. Object 7341h: AO Fault Field Value

This object contains the pre-defined field value of an analog output when a fault condition is present, and the corresponding sub-index in object 7341 h is enabled. It will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332 h AO Decimal Digits FV.

## Object Description

Index	7341h
Name	AO Fault Field Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Fault Field Value
Access	RW
PDO Mapping	No
Value Range	Dependent on type (see Table 3)
Default Value	$500[\mathrm{~mA}]$

### 2.3.16. Object 7F50h: Received Process Value

This object is a generic input process value that is used to write to the analog output function block's process value, object 7300. If and only if the value of object 6F52h at the same sub-index is set to validate the PV will the data from object 7F50h be copied to object 6F52h.

## Object Description

Index	7F50h
Name	Received Process Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	Receive Process Value $x$
Access	RW
PDO Mapping	Yes
Value Range	INTEGER16
Default Value	0

### 2.3.17. Object 6F52: Received Process Value Status

This object is used to validate the value in object 7F50h (Received PV) such that the value will be copied to object 7300h (AO Output Process Value) and subsequently used as the output command. If this object is set to non-validated value, the Received PV is not used. However, writes to object 7330h (AO Output Field Value) is allowed at any time, thus the filed value can be used to control outputs, even when the process values have not been validated.

The value of object 6F52h is invalidated after the value in object 7F50h is copied to object 7300h. Therefore, if the object is not mapped into a PDO, the user must validate the Received Process Value by SDO writes before the Received PV will be used.

The following status values are allowed for object 6F52h:

- 0 (FALSE) $=$ Received PV value not validated (writes to object 7F50h are ignored)
- 1 (TRUE) = Received PV value is validated (writes to object 7F50h are copied to 7300h)

Object Description

Index	6F52h
Name	Received Process Value
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh


Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	Receive Process Value Status $x$
Access	RW
PDO Mapping	Yes
Value Range	0 [FALSE], 1 [TRUE]
Default Value	0

### 2.3.18. Object 23904: Static Output Bias

This object allows/sets the output level at zero command to start at a higher value. The value will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332h AO Decimal Digits FV.

Object Description

Index	7450 h
Name	Static Output Bias
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to Ah $(x=1$ to 10$)$
Description	Static Output Bias $x$
Access	RW
PDO Mapping	No
Value Range	Dependent on type (see Table 3)
Default Value	0

### 2.3.19. Object 7450h: PID Proportional Band

This object describes the proportional band gain (G in Figure 8) of the PID algorithm. The value is always interpreted as having a resolution of one digit after the decimal place.

Object Description

Index	7450h
Name	PID Proportional Band
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	PIDx Proportional Gain
Access	RW
PDO Mapping	No
Value Range	0 to $100(0$ to 10.0$)$
Default Value	$5[0.5]$

### 2.3.20. Object 7452h: PID Integral Action Time

This object describes the integral time (Ti in Figure 8) of the PID algorithm. The physical unit is always seconds, as defined in object 6458h, with the decimal digits (resolution) given in object 6459h. To prevent instability, it is recommended to never set this less than three times higher than object 7454h (Td in Figure 8).

## Object Description

Index	7452h
Name	PID Integral Action Time
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	PIDx Integral Time
Access	RW
PDO Mapping	No
Value Range	$0.001[\mathrm{sec}]$ to $1000.00[\mathrm{sec}]$
Default Value	$5[\mathrm{~ms}$ or 0.005 sec$]$

### 2.3.21. Object 7454h: PID Derivative Action Time

This object describes the derivative time (Td in Figure 8) of the PID algorithm. The physical unit is always seconds, as defined in object 6458h, with the decimal digits (resolution) given in object 6459h. To prevent instability, it is recommended to never set this more than three times smaller than object 7452h (Ti in Figure 8).

Object Description

Index	7454h
Name	PID Derivative Action Time
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	PIDx Derivative Time
Access	RW
PDO Mapping	No
Value Range	$0.001[\mathrm{sec}]$ to $1000.00[\mathrm{sec}]$
Default Value	$1[\mathrm{~ms}$ or 0.001 sec$]$

### 2.3.22. Object 7456h: PID Cycle Time

This object defines how frequently the PID loop is called. The physical unit is always seconds, as defined in object 6458h, with the decimal digits (resolution) given in object 6459h.

Object Description

Index	7456h
Name	PID Cycle Time
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	PIDx Cycle Time
Access	RW
PDO Mapping	No
Value Range	$0.001[\mathrm{sec}]$ to $1000.00[\mathrm{sec}]$
Default Value	$10[\mathrm{~ms}$ or 0.010 sec$]$

### 2.3.23. Object 6458h: PID Physical Unit Timing

This read-only object defines the physical unit of objects $7452 \mathrm{~h}, 7454 \mathrm{~h}$ and 7456 h . It represents "seconds" as the unit used in all cases.

Object Description

Index	6458h
Name	PID Physical Unit Timing
Object Type	ARRAY
Data Type	UNSIGNED32

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4$)$
Description	PIDx Physical Unit Timing
Access	RO
PDO Mapping	No
Value Range	00030000 h
Default Value	00030000 h (seconds)

### 2.3.24. Object 6459h: PID Decimal Digits Timing

This object describes the number of digits following the decimal point (i.e. resolution) of the PID timing data, which is interpreted with data type Integer16 in objects 7452h, 7454 h and 7456 h .

Object Description

Index	6459h
Name	PID Decimal Digits Timing
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4$)$
Description	PIDx Decimal Digits Timing
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	3 [default ms]

### 2.4. MANUFACTURER OBJECTS

Index   (hex)	Object	Object Type	Data Type	Access	PDO   Mapping
2220	DO Hotshot Current 1 Output Line	ARRAY	INTEGER16	RW	No
2221	DO Hold Current 1 Output Line	ARRAY	INTEGER16	RW	No
2222	DO Hotshot Time 1 Output Line	ARRAY	UNSIGNED16	RW	No
2223	DO Blink Rate 1 Output Line	ARRAY	UNSIGNED16	RW	No
2224	DO Delay Time 1 Output Line	ARRAY	UNSIGNED16	RW	No
2225	DO Delay Polarity 1 Output Line	ARRAY	UNSIGNED8	RW	No
2300	AO Override Field Value	ARRAY	INTEGER16	RW	No
2310	AO Error Detect Enable	ARRAY	BOOLEAN	RW	No
2311	AO Error Clear Hysteresis	ARRAY	INTEGER16	RW	No
2312	AO Error Reaction Delay	ARRAY	UNSIGNED16	RW	No
2320	AO Dither Frequency	ARRAY	UNSIGNED16	RW	No
2321	AO Dither Amplitude	ARRAY	UNSIGNED16	RW	No
2330	AO Ramp Up	ARRAY	UNSIGNED16	RW	No
2331	AO Ramp Down	ARRAY	UNSIGNED16	RW	No
2340	AO Control Input Source	ARRAY	UNSIGNED8	RW	No
2341	AO Control Input Number	ARRAY	UNSIGNED8	RW	No
2342	AO Control Response	ARRAY	UNSIGNED8	RW	No
2350	AO Enable Input Source	ARRAY	UNSIGNED8	RW	No
2351	AO Enable Input Number	ARRAY	UNSIGNED8	RW	No
2352	AO Enable Response	ARRAY	UNSIGNED8	RW	No
2360	AO Override Input Source	ARRAY	UNSIGNED8	RW	No
2361	AO Override Input Number	ARRAY	UNSIGNED8	RW	No
2362	AO Override Response	ARRAY	UNSIGNED8	RW	No
2370	AO Feedback Field Value	ARRAY	INTEGER16	RO	Yes
2380	AO Output Frequency	ARRAY	UNSIGNED16	RW	No
2382	AO Current PID Proportional Gain	ARRAY	FLOAT32	RW	No
2383	AO Current PID Integral Time	ARRAY	FLOAT32	RW	No
2384	AO Current PID Derivative Time	ARRAY	FLOAT32	RW	No
2450	PID Tolerance	ARRAY	INTEGER16	RW	No
2451	PID Integral Gain	ARRAY	INTEGER16	RW	No
2452	PID Derivative Gain	ARRAY	INTEGER16	RW	No
2453	PID Target Source	ARRAY	UNSIGNED8	RW	No
2454	PID Target Number	ARRAY	UNSIGNED8	RW	No
2455	PID Feedback Source	ARRAY	UNSIGNED8	RW	No
2456	PID Feedback Number	ARRAY	UNSIGNED8	RW	No
2457	PID Control Response	ARRAY	UNSIGNED8	RW	No
2460	PID Output Field Value	ARRAY	INTEGER16	RO	Yes
2500	EC Extra Received Process Value	ARRAY	INTEGER16	RW	Yes
2502	EC Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
2520	EC Scaling 1 PV	ARRAY	INTEGER16	RW	No
2522	EC Scaling 2 PV	ARRAY	INTEGER16	RW	No
$3 y z 0$	LTyz Input X-Axis Source	VAR	UNSIGNED8	RW	No
$3 y z 1$	LTyz Input X-Axis Number	VAR	UNSIGNED8	RW	No
$3 y z 2$	LTyz Auto Repeat	VAR	UNSIGNED8	RW	No
$3 y z 3$	LTyz X-Axis Decimal Digits PV	VAR	UNSIGNED8	RW	No
$3 y z 4$	LTyz Y-Axis Decimal Digits PV	VAR	UNSIGNED8	RW	No
$3 y z 5$	LTyz Point Response	ARRAY	UNSIGNED8	RW	No
$3 y z 6$	LTyz Point X-Axis PV	ARRAY	INTEGER32	RW	No
$3 y z 7$	LTyz Point Y-Axis PV	ARRAY	INTEGER16	RW	No


$3 y z 8$	LTyz Output Y-Axis PV	VAR	INTEGER16	RO	Yes
3300	Logic Block Enable	ARRAY	BOOLEAN	RW	No
3310	Logic Block Selected Table	ARRAY	UNSIGNED8	RO	Yes
3320	Logic Output Process Value	ARRAY	INTEGER16	RO	Yes
$3 x 01$	LB(3-x) Lookup Table Number	ARRAY	UNSIGNED8	RW	No
$3 x 02$	LB(3-x) Function Logical Operator	ARRAY	UNSIGNED8	RW	No
$3 x 11$	LB(3-x) Function A Condition 1	RECORD	UNSIGNED8	RW	No
$3 x 12$	LB(3-x) Function A Condition 2	RECORD	UNSIGNED8	RW	No
$3 x 13$	LB(3-x) Function A Condition 3	RECORD	UNSIGNED8	RW	No
$3 x 21$	LB(3-x) Function B Condition 1	RECORD	UNSIGNED8	RW	No
$3 x 22$	LB(3-x) Function B Condition 2	RECORD	UNSIGNED8	RW	No
$3 x 23$	LB(3-x) Function B Condition 3	RECORD	UNSIGNED8	RW	No
$3 x 31$	LB(3-x) Function C Condition 1	RECORD	UNSIGNED8	RW	No
$3 x 32$	LB(3-x) Function C Condition 2	RECORD	UNSIGNED8	RW	No
$3 x 33$	LB(3-x) Function C Condition 3	RECORD	UNSIGNED8	RW	No
4500	Math Block Enable	ARRAY	BOOLEAN	RW	No
4521	Math Output Scaling 1 PV	ARRAY	INTEGER16	RW	No
4523	Math Output Scaling 2 PV	ARRAY	INTEGER16	RW	No
4530	Math Output Process Value	ARRAY	INTEGER16	RO	Yes
4532	Math Output Decimal Digits PV	ARRAY	UNSIGNED8	RW	No
$4 y 00$	Math Y Input Source	ARRAY	UNSIGNED8	RW	No
$4 y 01$	Math Y Input Number	ARRAY	UNSIGNED8	RW	No
$4 y 02$	Math Y Function Number	ARRAY	UNSIGNED8	RW	No o
$4 y 03$	Math Y Input Decimal Digits FV	ARRAY	UNSIGNED8	RW	No
$4 y 20$	Math Y Input Scaling 1 FV	ARRAY	INTEGER16	RW	No
$4 y 22$	Math Y Input Scaling 2 FV	ARRAY	INTEGER16	RW	No
$4 y 40 ~$	Math Y Input Gain	ARRAY	INTEGER8	RW	No
$4 y 50$	Math Y Operator	ARRAY	UNSIGNED8	RW	No
5010	Constant Field Value	ARRAY	FLOAT32	RW	No
5020	Power Supply Field Value	VAR	FLOAT32	RO	Yes
5020	Processor Temperature Field Value	VAR	FLOAT32	RO	Yes
$5555 ~$	Start in Operational Mode	VAR	BOOLEAN	RW	No

Where $\boldsymbol{y z}=01$ to 12 (LUT 1 to 12) and $\boldsymbol{x}=4$ to 7 (Logic 1 to 4) and $\boldsymbol{y}=1$ to 6 (Math 1 to 6)

### 2.4.1. Object 2220h: DO Hotshot Current 1 Output Line

This object is used to define the hotshot current that will be applied for the hotshot time when an output configured as a digital hotshot is turned ON. See Figure 3 for more information. The physical unit is mA, and it uses the same resolution as the AO Output FV, so object 6332 AO Decimal Digits FV applies.

Object Description

Index	2220 h
Name	DO Hotshot Current 1 Output Line
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	DOx Hotshot Current
Access	RW
PDO Mapping	No
Value Range	2221 h (Hold Current) to Imax (2.5A)
Default Value	$2000[\mathrm{~mA}]$

### 2.4.2. Object 2221h: DO Hold Current 1 Output Line

This object is used to define the hold current that will be maintained after the hotshot time while an output configured as a digital hotshot is ON. See Figure 3 for more information. The physical unit is mA , and it uses the same resolution as the AO Output FV, so object 6332 AO Decimal Digits FV applies.

Object Description

Index	2221h
Name	DO Hold Current 1 Output Line
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	DOx Hold Current
Access	RW
PDO Mapping	No
Value Range	0 to 2220 h (Hotshot Current)
Default Value	$500[\mathrm{~mA}]$

### 2.4.3. Object 2222h: DO Hold Time 1 Output Line

This object is used to define the time that the hotshot current will be applied when an output configured as a digital hotshot is turned ON. See Figure 3 for more information. The physical unit is milliseconds.

Object Description

Index	2222 h
Name	DO Hotshot Time 1 Output Line
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	DOx Hotshot Time
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$1000[\mathrm{~ms}]$

### 2.4.4. Object 2223h: DO Blink Rate 1 Output Line

This object is used only when an On/Off digital output (does not apply with a digital hotshot) has been specified for a blinking response by object 6240h DO Polarity. While the DO is commanded ON, it will blink on/off at the rate specified in this object. (On for $x$, then off for $x$ ). The physical unit is milliseconds.

Object Description

Index	2223h
Name	DO Blink Rate1 Output Line
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	DOx Blink Rate
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$500[\mathrm{~ms}]$

### 2.4.5. Object 2224h: DO Delay Time 1 Output Line

This object is used only when an ON/OFF digital output has been specified for a normal ON/OFF response by object 6240h DO Polarity (only applies to Normal ON/OFF). While the DO is commanded, the output will remain in the previous state until the time specified in this object has elapsed prior to changing to the commanded state. The physical unit is milliseconds. The polarity for which the delay will take effect is specified by object 2225 h.

Object Description

Index	2225 h
Name	DO Delay Time Output Line
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	DOx Delay Time
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$0[\mathrm{~ms}]$

### 2.4.6. Object 2225h: DO Delay Polarity 1 Output Line

This object is used only when an ON/OFF digital output has been specified for a normal ON/OFF response by object 6240h DO Polarity (only applies to Normal ON/OFF). While the DO is commanded to the state specified by this object, the output will remain in the previous state until the time specified by object 2224h has elapsed prior to driving the output to the commanded state.

Object Description

Index	2225 h
Name	DO Delay Time Output Line
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	DOx Delay Time
Access	RW
PDO Mapping	No
Value Range	$0(\mathrm{OFF})$ to 1 (ON)
Default Value	$1[\mathrm{ON}]$

### 2.4.7. Object 2300h: AO Override Field Value

This object contains the pre-defined field value of an analog output when an override condition is active. It will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332h AO Decimal Digits FV.

## Object Description

Index	2300 h
Name	AO Override FV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Override FV


Access	RW
PDO Mapping	No
Value Range	Dependent on type (see Table 3)
Default Value	$750[\mathrm{~mA}]$

### 2.4.8. Object 2310h: AO Error Detect Enable

This object enables error detection and reaction associated with the analog output function block. When disabled, the input will not generate an EMCY code in object 1003h Pre-Defined Error Field should the control detect an open/short circuit at the load.

## Object Description

Index	2310 h
Name	AO Error Detect Enable
Object Type	ARRAY
Data Type	BOOLEAN

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Error Detect Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	1 [TRUE]

### 2.4.9. Object 2311h: AO Error Clear Hysteresis

This object is used to define the absolute difference that can be tolerated between the target output (as commanded by the control input) and the measured feedback. Any difference outside of the value will flag an open or short circuit fault. It is scaled in the physical unit of the output FV, i.e. object 6332 h applies to this object.

Object Description

Index	2311 h
Name	AO Error Clear Hysteresis
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No


Value Range	10
Default Value	10


Sub-Index	1h to Oh $(x=1$ to 10)
Description	AOx Error Clear Hysteresis
Access	RW
PDO Mapping	No
Value Range	0 to $10 \%$ of 7321 h or 7323 h,   whichever is larger
Default Value	$100[\mathrm{~mA}]$

### 2.4.10. Object 2312h: AO Error Reaction Delay

This object is used to filter out spurious signals and to prevent saturating the CANopen® network with broadcasts of object 1003h as the fault is set/cleared. Before the fault is recognized (i.e. the EMCY code is added to the pre-defined error field list), it must remain active throughout the period of time defined in this object. The physical unit for this object is milliseconds.

Object Description

Index	2312 h
Name	AO Error Reaction Delay
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Error Reaction Delay
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$1000[\mathrm{~ms}]$

### 2.4.11. Object 2320h: AO Dither Frequency

This object defines the low frequency that is superimposed on the high output frequency (object 2380h) when an AO is configured as a current output. The dither frequency should be selected such that the valve will respond immediately to small changes in current. There are three dither timers in the CAN-100UT and are split as follows: Dither 1 is used among AO1-AO4; Dither 2 is used among AO5-AO8; Dither 3 is used among AO9-AO10 as defined in sub-index 1-3, respectively. The physical unit for this object is Hertz.

Object Description

Index	2320h
Name	AO Dither Frequency
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	3
Default Value	3


Sub-Index	1h to $3 \mathrm{~h}(\mathrm{x}=1$ to 3$)$
Description	AOx Dither Frequency
Access	RW
PDO Mapping	No
Value Range	50 to 400
Default Value	$250[\mathrm{~Hz}]$

### 2.4.12. Object 2321h: AO Dither Amplitude

This object defines the amplitude of the low frequency signal that is superimposed on the output when an AO is configured as a current output. A zero value in this object disables the dithering feature. Note, the actual dither amplitude will not match exactly what is defined in this object, as it will be dependent on the inductance of the coil. Rather, this object should be adjusted such that the valve will respond immediately to small changes in current. The physical unit for this object is milliamps. Object 6332h does NOT apply.

Object Description

Index	2321h
Name	AO Dither Amplitude
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1 h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Dither Amplitude
Access	RW
PDO Mapping	No
Value Range	0 to 500
Default Value	0 [mA] (dithering disabled)

### 2.4.13. Object 2330h: AO Ramp Up

This object defines the time it will take to ramp from the minimum output PV to the maximum as defined by objects 7321 h and 7323 h . It can be used to soften the response to a step change at the input. The physical unit for this object is milliseconds.

## Object Description

Index	2330h
Name	AO Ramp Up
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Ramp Up
Access	RW
PDO Mapping	No
Value Range	0 to 60,000
Default Value	$1000[\mathrm{~ms}]$

### 2.4.14. Object 2331h: AO Ramp Down

This object defines the time it will take to ramp from the maximum output PV to the minimum as defined by objects 7321 h and 7323 h . It can be used to soften the response to a step change at the input. The physical unit for this object is milliseconds.

Object Description

Index	2331 h
Name	AO Ramp Down
Object Type	ARRAY
Data Type	UNSIGNED16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Ramp Down
Access	RW


PDO Mapping	No
Value Range	0 to 60,000
Default Value	$1000[\mathrm{~ms}]$

### 2.4.15. Object 2340h: AO Control Input Source

This object defines the type of input that will be used to control the analog (or digital) output as shown in the logic flowchart in Figure 6. The available control sources on the CAN-10OUT controller are listed in Table 4. Not all sources would make sense to control the AO, and it is the user's responsibility to select a source that makes sense for the application.

## Object Description

Index	$2340 h$
Name	AO Control Input Source
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Control Input Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	1 (CANopen® RPDO)

### 2.4.16. Object 2341h: AO Control Input Number

This object defines the number of the source that will be used to control the analog (or digital) output as shown in the logic flowchart in Figure 6. The available control numbers are dependent on the source selected, as shown in Table 5. Once selected, the control represents the process value (X-Axis input) in Figure 5. Objects 6302h, 7320h, 7322h should therefore be updated to match the scaling limits defined by the control source/number, as listed in Table 6.

Object Description

Index	2341h
Name	AO Control Input Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No


Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Control Input Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	$\mathrm{x}($ CANopen® Message x$)$

### 2.4.17. Object 2342h: AO Control Response

This object defines the response profile of the analog output FV with respect to the input PV (as selected by objects $2340 \mathrm{~h} / 2341$ h.) Normally it will follow the profile shown in Figure 5 . However, in some cases the offset will be disabled (i.e. output at 0) when the PV is below 7320 h Scaling 1 PV or alternatively above the 7322 h Scaling 2 PV. The options for this object are listed in Table 7. When an output is configured as a digital output using object 6310h then this object is ignored, and object 6240 h, DO Polarity, is used instead.

Object Description

Index	2342 h
Name	AO Control Response
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Control Response
Access	RW
PDO Mapping	No
Value Range	See Table 7
Default Value	1 (Output OFF below Scaling 1 PV)

### 2.4.18. Object 2350h: AO Enable Input Source

This object defines the type of input that will be used to enable/disable the analog (or digital) output as shown in the logic flowchart in Figure 6. The available control sources on the CAN-10OUT controller are listed in Table 4. Not all sources would make sense to enable the AO, and it is the user's responsibility to select a source that makes sense for the application.

Object Description

Index	$2350 h$
Name	AO Enable Input Source
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Enable Input Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control not used)

### 2.4.19. Object 2351h: AO Enable Input Number

This object defines the number of the source that will be used to enable/disable the analog (or digital) output as shown in the logic flowchart in Figure 6. The available control numbers are dependent on the source selected, as shown in Table 5.

## Object Description

Index	2351 h
Name	AO Enable Input Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Enable Input Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	0 (null control source)

### 2.4.20. Object 2352h: AO Enable Response

This object determines if the input will act as an enable or safety interlock (i.e. input must be ON to engage the output) or a disable signal (i.e. the output will shutoff when the input is ON.) The options for this object for analog output 1 to 4 are listed in Table 8.

## Object Description

Index	2352 h
Name	AO Enable Response
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Enable Response
Access	RW
PDO Mapping	No
Value Range	See Table 8
Default Value	3 (Enable When Off, Else Shut Off $)$

### 2.4.21. Object 2360h: AO Override Input Source

This object defines the type of input that will be used to active the override value for the analog outputs as shown in the logic flowchart in Figure 6. The available control sources on the CAN100UT controller are listed in Table 4. Not all sources would make sense to enable the AO, and it is the user's responsibility to select a source that makes sense for the application.

Object Description

Index	2360h
Name	AO Override Input Source
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(\mathrm{x}=1$ to 10$)$
Description	AOx Override Input Source


Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control not used)

### 2.4.22. Object 2361h: AO Override Input Number

This object defines the number of the source that will be used to override the analog outputs as shown in the logic flowchart in Figure 6. The available control numbers are dependent on the source selected, as shown in Table 5.

## Object Description

Index	2361 h
Name	AO Override Input Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Override Input Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	0 (null control source)

### 2.4.23. Object 2362h: AO Override Response

This object determines how the override command will respond to the input state. The options for this object are listed in Table 9.

Object Description

Index	2362 h
Name	AO Override Response
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Override Response
Access	RW
PDO Mapping	No
Value Range	See Table 9
Default Value	0 (Override When On)

### 2.4.24. Object 2370h: AO Feedback Field Value

This read-only object reflects the actual measured current feedback of an analog output. For other output types (i.e. voltage, PWM or digital,) it will reflect the target Output FV or State (for DO type) based on PV vs. FV calculations (see Figure 5) and applied ramps. It can be mapped to a PDO for diagnostic purposes. It will be scaled in the physical unit of the output, dependent on type, with the resolution defined in object 6332h AO Decimal Digits FV.

Object Description

Index	$2370 h$
Name	AO Feedback Field Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10)
Description	AOx Feedback Field Value
Access	RO
PDO Mapping	Yes
Value Range	Dependent on type (see Table 3)
Default Value	No

### 2.4.25. Object 2380h: AO Output Frequency

This object is used to set the frequency of the outputs. However, because some outputs share the same timers, if any output in its respective bank is configured as a Current or Hotshot type, the output frequency will remain 25 kHz . For the controller to change the output frequency of the bank, none of the outputs (in their bank) can be configured as any of these two types.

Object Description

Index	2380 h
Name	AO Output Frequency
Object Type	ARRAY
Data Type	INTEGER16

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Frequency
Access	RW
PDO Mapping	No
Value Range	$1-25,000 \mathrm{Hertz}$
Default Value	$25,000[\mathrm{~Hz}]$

### 2.4.26. Object 2382h: AO Current PID Proportional Gain

This object has been factory calibrated, and should be changed with caution. Axiomatic will no longer guarantee the accuracy or responsiveness of the current output when this value is changed. It is provided as a writeable object in case the output frequency is changed and the user wants to try and optimize the current PID loop. Axiomatic does not recommend this.

Object Description

Index	2382 h
Name	AO Current PID Proportional Gain
Object Type	ARRAY
Data Type	FLOAT32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to 10h $(x=1$ to 10$)$
Description	AOx Current PID Proportional Gain
Access	RW
PDO Mapping	No
Value Range	FLOAT32
Default Value	0.60

### 2.4.27. Object 2383h: AO Current PID Integral Time

This object has been factory calibrated, and should be changed with caution. Axiomatic will no longer guarantee the accuracy or responsiveness of the current output when this value is changed. It is provided as a writeable object in case the output frequency is changed and the user wants to try and optimize the current PID loop. Axiomatic does not recommend this.

Object Description

Index	2383 h
Name	AO Current PID Integral Time
Object Type	ARRAY
Data Type	FLOAT32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Current PID Integral Time
Access	RW
PDO Mapping	No
Value Range	FLOAT32
Default Value	0.0015

### 2.4.28. Object 2384h: AO Current PID Derivative Time

This object has been factory calibrated, and should be changed with caution. Axiomatic will no longer guarantee the accuracy or responsiveness of the current output when this value is changed. It is provided as a writeable object in case the output frequency is changed and the user wants to try and optimize the current PID loop. Axiomatic does not recommend this.

Object Description

Index	2384 h
Name	AO Current PID Derivative Time
Object Type	ARRAY
Data Type	FLOAT32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	10
Default Value	10


Sub-Index	1h to $10 \mathrm{~h}(x=1$ to 10$)$
Description	AOx Current PID Derivative Time
Access	RW
PDO Mapping	No
Value Range	FLOAT32
Default Value	0.0000

### 2.4.29. Object 2450h: PID Tolerance

This object defines the allowable absolution difference between the target and the feedback, below which the error will be interpreted as zero (i.e. PID output stops changing). The physical unit for this object is percentage, and the value is always interpreted as having a resolution of one digit after the decimal place.

Object Description

Index	2450 h
Name	PID Tolerance
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4$)$
Description	PIDx Tolerance
Access	RW
PDO Mapping	No
Value Range	0 to $100(0 \%$ to $10 \%)$
Default Value	$10[1 \%]$

### 2.4.30. Object 2451h: PID Integral Gain

This object describes the integral gain (Ki in Figure 8) of the PID algorithm. The value is always interpreted as having a resolution of one digit after the decimal place.

Object Description

Index	2451h
Name	PID Integral Gain
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4$)$
Description	PIDx Integral Gain
Access	RW


PDO Mapping	No
Value Range	0 to 100
Default Value	$10[1.0]$

### 2.4.31. Object 2452h: PID Derivative Gain

This object describes the derivative gain (Kd in Figure 8) of the PID algorithm. The value is always interpreted as having a resolution of one digit after the decimal place.

Object Description

Index	2452h
Name	PID Derivative Gain
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	PIDx Derivative Gain
Access	RW
PDO Mapping	No
Value Range	0 to 100
Default Value	$10[1.0]$

### 2.4.32. Object 2453h: PID Target Source

This object defines the type of input that will be used to determine the target process value for the PID control loop. The available control sources on the CAN-100UT controller are listed in Table 4. Not all sources would make sense to use as a PID target source, and it is the user's responsibility to select a source that makes sense for the application. A selection of "Control Source Not Used" disables the associated PID control function block.

Object Description

Index	2453 h
Name	PID Target Source
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4)
Description	PIDx Target Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control not used, PID disabled)

### 2.4.33. Object 2454h: PID Target Number

This object defines the number of the source that will be used as the target PV for the PID control loop. The available control numbers are dependent on the source selected, as shown in Table 5. Once selected, the control will convert the commanded target into a percentage value using the scaling limits of the control source/number as defined in Table 6.

## Object Description

Index	2454 h
Name	PID Target Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4
Sub-Index	1h to 4h $(\mathbf{x}=1$ to 4)
Description	PIDx Target Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	$\mathbf{x}$

### 2.4.34. Object 2455h: PID Feedback Source

This object defines the type of input that will be used to determine the feedback process value for the PID control loop. The available control sources on the CAN-10OUT controller are listed in Table 4. Not all sources would make sense to use as a PID feedback source, and it is the user's responsibility to select a source that makes sense for the application. A selection of "Control Source Not Used" disables the associated PID control function block.

Object Description

Index	2455 h
Name	PID Feedback Source
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4)
Description	PIDx Feedback Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control not used, PID disabled)

### 2.4.35. Object 2456h: PID Feedback Number

This object defines the number of the source that will be used as the feedback PV for the PID control loop. The available control numbers are dependent on the source selected, as shown in Table 5. Once selected, the control will convert the measured/received feedback into a percentage value using the scaling limits of the control source/number as defined in Table 6.

## Object Description

Index	$2456 h$
Name	PID Feedback Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathbf{x}=1$ to 4$)$
Description	PIDx Feedback Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	$\mathbf{x}$

### 2.4.36. Object 2457h: PID Control Response

This object defines the output profile for the PID control function block in a push-pull dual output system. The options for this object are listed in Table 11.

Object Description

Index	2457 h
Name	PID Control Response
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(x=1$ to 4$)$
Description	PIDx Control Response
Access	RW
PDO Mapping	No
Value Range	See Table 11
Default Value	0 (single output)

### 2.4.37. Object 2460h: PID Output Field Value

This read-only output contains the PID control function block FV (as a percentage) that can be used as the input source for another function block (i.e. analog output.) It will be a value between 0 to $100 \%$ as per the algorithm defined in Figure 8. The physical unit for this object is percentage, and the value is always interpreted as having a resolution of one digit after the decimal place.

Object Description

Index	2460 h
Name	PID Output FV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(\mathbf{x}=1$ to 4)
Description	PIDx Output FV
Access	RO
PDO Mapping	Yes
Value Range	0 to $1000(0$ to $100 \%)$
Default Value	No

### 2.4.38. Object 2500h: EC Extra Received Process Value

This object provides an extra control source in order to allow other function blocks to be controlled by data received from a CANopen® RPDO. It functions similarly to any other writeable, mappable PV object, such as 7300h AO Output PV.

Object Description

Index	2500 h
Name	EC Extra Received Process Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	14
Default Value	14


Sub-Index	1h to $14 \mathrm{~h}(\mathrm{x}=1$ to 14$)$
Description	ECx Received Process Value
Access	RW
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

### 2.4.39. Object 2502h: EC Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the extra control data, which is interpreted with data type Integer16 in the process value object.

Object Description

Index	2502 h
Name	EC Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	14
Default Value	14


Sub-Index	1h to $14 \mathrm{~h}(x=1$ to 14$)$
Description	ECx Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$1(0.1$ resolution $)$

### 2.4.40. Object 2520h: EC Scaling 1 PV

This object defines the minimum value of the extra control source. It used as the Scaling 1 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 5. There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502h, EC Decimal Digits PV. This object must always be smaller than object 2522h EC Scaling 2 PV.

## Object Description

Index	2520 h
Name	EC Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	14
Default Value	14


Sub-Index	1h to $14 \mathrm{~h}(x=1$ to 14$)$
Description	ECx Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 2522 h sub-index X
Default Value	0

### 2.4.41. Object 2522h: EC Scaling 2 PV

This object defines the maximum value of the extra control source. It used as the Scaling 2 value by other functions blocks when the EC has been selected as the source for the X-Axis data, i.e. as seen in Figure 5. There is no physical unit associate with the data, but it uses the same resolution as the received PV as defined in object 2502h, EC Decimal Digits PV. This object must always be larger than object 2520h EC Scaling 1 PV.

Object Description

Index	2522h
Name	EC Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	14
Default Value	14


Sub-Index	1 h to $14 \mathrm{~h}(\mathrm{x}=1$ to 14$)$
Description	ECx Scaling 2 PV
Access	RW
PDO Mapping	No
Value Range	2520 h sub-index x to 32767
Default Value	$1000(100.0)$

### 2.4.42. Object 3yzOh: LTyz Input X-Axis Source

This object defines the type of input that will be used to determine the $X$-Axis input process value for the lookup table function. The available control sources on the CAN-10OUT controller are listed in Table 4. Not all sources would make sense to use as an X-Axis input, and it is the user's responsibility to select a source that makes sense for the application. A selection of "Control Source Not Used" disables the associated lookup table function block.

Object Description

Index	3yzOh (where yz = 01 to 12)
Name	LTyz Input X-Axis Source
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control not used)

### 2.4.43. Object 3yz1h: LTyz Input X-Axis Number

This object defines the number of the source that will be used as the X-Axis input PV for the lookup table function. The available control numbers are dependent on the source selected, as shown in Table 5. Once selected, the limits for the points on the X-Axis will be constrained by the scaling objects of the control source/number as defined in Table 6.

Object Description

Index	3yz1h (where yz = 01 to 12)
Name	LTyz Input X-Axis Number
Object Type	VARIABLE
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	0 (null control source)

### 2.4.44. Object 3yz2h: LTyz Auto Repeat

This object determines whether the lookup table sequence will repeat automatically once the last point in the lookup table has been completed. This object is only taken into effect when the response is set to 'Time Response'. For more details on the functionality of this object and its effect on the lookup table, please refer to section 1.5.4

Object Description

Index	3yz2h (where yz = 01 to 12)
Name	LTyz X-Axis Decimal Digits PV
Object Type	VARIABLE
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	$0(\mathrm{OFF})$ to 1 (ON)
Default Value	$0[\mathrm{OFF}]$

### 2.4.45. Object 3yz3h: LTyz X-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the X -Axis input data and the points in the lookup table. It should be set equal to the decimal digits used by the PV from the control source/number as defined in Table 6.

Object Description

Index	3yz3h (where yz = 01 to 12)
Name	LTyz X-Axis Decimal Digits PV
Object Type	VARIABLE
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 4 (see Table 6)
Default Value	0

### 2.4.46. Object 3yz4h: LTyz Y-Axis Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the Y-Axis points in the lookup table. When the Y-Axis output is going to be the input to another function block (i.e. an analog output), it is recommended that this value be set equal to the decimal digits used by the block that is using the lookup table as the control source/number.

Object Description

Index	3yz4h (where yz = 01 to 12)
Name	LTyz Y-Axis Decimal Digits PV
Object Type	VARIABLE


Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	0

### 2.4.47. Object 3yz5h: LTyz Point Response

This object determines the Y -Axis output response to changes in the X -Axis input. The value set in sub-index 1 determines the X-Axis type (i.e. data or time), while all other sub-indexes determine the response (ramp, step, ignore) between two points on the curve. The options for this object are listed in Table 12. See Figure 10 for an example of the difference between a step and ramp response.

## Object Description

Index	3yz5h (where yz = 01 to 12)
Name	LTyz Point Response
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11


Sub-Index	1h
Description	X-Axis Type
Access	RW
PDO Mapping	No
Value Range	See Table 12 (0 or 1)
Default Value	0 (x-axis data response)


Sub-Index	2h to 11h $(x=2$ to 11$)$
Description	LTyz Point X Response
Access	RW
PDO Mapping	No
Value Range	See Table 12 (0, 1 or 2$)$
Default Value	1 (ramp to response)

### 2.4.48. Object 3yz6h: LTyz Point X-Axis PV

This object defines the $X$-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes.

When a data response is selected for the X-Axis type (sub-index 1 of object 3yz5), this object is constrained such that X1 cannot be less than the Scaling 1 value of the selected control source/number, and X11 cannot be more than the Scaling 2 value. The rest of the points are constrained by the formula below. The physical unit associate with the data will be that of the selected input, and it will use the resolution defined in object 3yz3h, LTz X-Axis Decimal Digits PV.

$$
\text { MinInt16 }<=X_{1}<=X_{2}<=X_{3}<=X_{4}<=X_{5}<=X_{6}<=X_{7}<=X_{8}<=X_{9}<=X_{10}<=X_{11}<=\text { MaxInt16 }
$$

When a time response has been selected, each point on the X -Axis can be set anywhere from 1 to $86,400,000 \mathrm{~ms}$.

## Object Description

Index	3yz6h (where yz = 01 to 12)
Name	LTyz Point X-Axis PV
Object Type	ARRAY
Data Type	INTEGER32

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11


Sub-Index	1h to $11 \mathrm{~h}(x=1$ to 11$)$	
Description	LTyz Point X-Axis PVx	
Access	RW	
PDO Mapping	No	
Value Range	See above (data)	1 to 86400000 (time)
Default Value	$10^{*}(x-1)$	No

### 2.4.49. Object 3yz7h: LTyz Point Y-Axis PV

This object defines the Y-Axis data for the 11 calibration points on the lookup table, resulting in 10 different output slopes. The data is unconstrained and has no physical unit associate with it. It will use the resolution defined in object 3yz4h, LTyz Y-Axis Decimal Digits PV.

Object Description

Index	3yz7h (where yz = 01 to 12)
Name	LTz Point Y-Axis PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	11
Default Value	11


Sub-Index	1h to $11 \mathrm{~h}(x=1$ to 11)
Description	LTyz Point Y-Axis PVx
Access	RW
PDO Mapping	No
Value Range	Integer16
Default Value	$10^{*}(x-1)[$ [i.e. $0,10,20,30, \ldots 100]$

### 2.4.50. Object 3yz8h: LTyz Output Y-Axis PV

This read-only object contains the lookup table function block PV that can be used as the input source for another function block (i.e. analog output.) The physical unit for this object is undefined, and it will use the resolution defined in object 3yz4h, LTz Y-Axis Decimal Digits PV.

## Object Description

Index	3yz8h (where yz = 01 to 12)
Name	LTyz Output Y-Axis PV
Object Type	VARIABLE
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Access	RO
PDO Mapping	Yes
Value Range	Integer16
Default Value	No

### 2.4.51. Object 3300h: Logic Block Enable

This object defines whether or not the logic shown in Figure 13 will be evaluated.
Object Description

Index	3300 h
Name	Logic Block Enable
Object Type	ARRAY
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(x=1$ to 4$)$
Description	LBx Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

### 2.4.52. Object 3310h: Logic Block Selected Table

This read-only object reflects what table has been selected as the output source for the logic block after the evaluation shown in Figure 13 has been performed.

Object Description

Index	3310h
Name	Logic Block Selected Table
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{x}=1$ to 4$)$
Description	LBx Selected Table
Access	RO
PDO Mapping	Yes
Value Range	1 to 12
Default Value	No

### 2.4.53. Object 3320h: Logic Block Output PV

This read-only object reflects the output from the selected table, interpreted as a percentage. The limits for the percentage conversion are based on the range of the lookup tables Y -Axis Output PV as shown in Table 6. This value has a fixed decimal digit value of 1 giving a resolution of $0.1 \%$.

Object Description

Index	3320h
Name	Logic Block Output PV
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4h $(x=1$ to 4$)$
Description	LBx Output PV
Access	RO
PDO Mapping	Yes
Value Range	Dependent on Selected Table
Default Value	No

### 2.4.54. Object $3 x 01$ : LB(3-x) Lookup Table Numbers

This object determines which of the six lookup tables supports on the CAN-10OUT are associated with a particular function within the given logic block. Up to three tables can be linked to each logic function.

## Object Description

Index	$3 x 01 \mathrm{~h}$ (where $\mathrm{x}=4$ to 7)
Name	LB(3-x) Lookup Table Numbers
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to 4 h ( $\mathrm{y}=\mathrm{A}$ to C )
Description	LB(3- x$)$ Lookup Table Y Number
Access	RW
PDO Mapping	No
Value Range	1 to 12
Default Value	See Table 18

### 2.4.55. Object 3x02h: LB(3-x) Function Logical Operator

This object determines how the results of the three conditions for each function are to be compared to one another to determine the overall state of the function output. There are up to three functions that can be evaluated in each logic block. The options for this object are defined in Table 5. See Section 1.8 for more information about how this object is used.

Object Description

Index	$3 x 02 \mathrm{~h}$ (where $x=4$ to 7 )
Name	LB(3-x) Function Logical Operator
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	4
Default Value	4


Sub-Index	1h to $4 \mathrm{~h}(\mathrm{y}=\mathrm{A}$ to C$)$
Description	LB(3-x) Function Y Logical Operator
Access	RW


PDO Mapping	No
Value Range	See Table 5
Default Value	Function $A=1$ (and all)
	Function $B=1$ (and all)
	Function $C=0$ (default)

2.4.56. Object $3 x 11 h$ : LB(3-x) Function A Condition 1
2.4.57. Object 3x12h: LB(3-x) Function A Condition 2
2.4.58. Object $3 x 13 h$ : LB(3-x) Function A Condition 3
2.4.59. Object $3 \times 21 \mathrm{~h}$ : LB(3-x) Function B Condition 1
2.4.60. Object $3 \times 22 h$ : LB(3-x) Function B Condition 2
2.4.61. Object 3x23h: LB(3-x) Function B Condition 3
2.4.62. Object $3 x 31 \mathrm{~h}$ : LB(3-x) Function C Condition 1
2.4.63. Object $3 \times 32 h$ : LB(3-x) Function C Condition 2
2.4.64. Object $3 x 33 h$ : LB(3-x) Function C Condition 3

These objects, $3 x y z h$, represent Logic Block z, Function y, Condition z, where $x=4$ to $7, y=1$ (A) to $3(C)$, and $z=1$ to 3 . All of these objects are a special type of record, defined in Table 13. Information on how to use these objects is defined in Section 1.6.

Object Description

Index	3xyzh
Name	LB(3-x) Function y Condition $z$
Object Type	RECORD
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	5
Default Value	5


Sub-Index	1h
Description	Argument 1 Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	1 (CANopen® Message)


Sub-Index	2 h
Description	Argument 1 Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	11 (EC Received PV 1)


Sub-Index	3h
Description	Argument 2 Source


Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	5 (Constant PV)


Sub-Index	4h
Description	Argument 2 Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	3 (Constant FV 3)


Sub-Index	5 h
Description	Operator
Access	RW
PDO Mapping	No
Value Range	See Table 14
Default Value	0 (Equals)

### 2.4.65. Object 4000h: Math Function Enable

The corresponding sub-index of object must be set TRUE in order for a math function block to be enabled. Otherwise, the output will always be at 0 .

Object Description

Index	4000h
Name	Math Function Enable
Object Type	ARRAY
Data Type	BOOLEAN

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	2
Default Value	2


Sub-Index	1h to 6 h (Y = 1 to 6)
Description	Math Y Enable
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

### 2.4.66. Object 4021h: Math Output Scaling 1 PV

This object defines the process value that would correspond to $0 \%$ output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

Object Description

Index	4021h
Name	Math Output Scaling 1 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to 6h (Y = 1 to 6)
Description	Math Y Output Scaling 1 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 32767
Default Value	0

### 2.4.67. Object 4023h: Math Output Scaling 2 PV

This object defines the process value that would correspond to $100 \%$ output from the math calculation. The object would apply the resolution defined in object 4532h Math Output Decimal Digits PV. The physical unit is undefined.

## Object Description

Index	4023h
Name	Math Output Scaling 2 PV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6)
Description	Math Y Output Scaling 2 PV
Access	RW
PDO Mapping	No
Value Range	-32768 to 32767
Default Value	$10000(100.00)$

### 2.4.68. Object 4030h: Math Output Process Value

This read-only object reflects the output from the math function block after it has been scaled by objects 4021 h and 4023 h . The object would apply the resolution defined in object 4032 h Math Output Decimal Digits PV. The physical unit is undefined.

## Object Description

Index	4030h
Name	Math Output Process Value
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to 6h (Y = 1 to 6)
Description	Math Y Output Process Value
Access	RO
PDO Mapping	Yes
Value Range	-32768 to 32767
Default Value	No

### 2.4.69. Object 4032h: Math Output Decimal Digits PV

This object describes the number of digits following the decimal point (i.e. resolution) of the output data, which is interpreted with data type Integer16 in the process value object.

Object Description

Index	4032h
Name	Math Output Decimal Digits PV
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{Y}=1$ to 6$)$
Description	Math Y Decimal Digits PV


Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$2(0.01)$

### 2.4.70. Object 4y00h: Math Y Input Source

This object defines the input sources that will be used in the mathematical calculations. Here, y = 1 to 6 - representing Math Block 1 to Math Block 6. If a control source is not used, the associate mathematical calculation would be ignored. The available control sources on the CAN-10OUT controller are listed in Table 4.

## Object Description

Index	4y00h (y = 1 to 6)
Name	Math Y Input Source
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$
Description	Math Y Input X Source
Access	RW
PDO Mapping	No
Value Range	See Table 4
Default Value	0 (control source not used)

### 2.4.71. Object 4y01h: Math Y Input Number

This object defines the number of the input source that will be used in the math calculation. The available control numbers are dependent on the source selected, as shown in Table 5. Once selected, the input value will be used in the corresponding calculation as described in Section 1.7.

Object Description

Index	4y01h (y = 1 to 6)
Name	Math Y Input Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No


Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$
Description	Math Y Input X Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	0 (null input)

### 2.4.72. Object 4y02h: Math Y Input Function Number

This object defines the number of the function within the Math Block will be used in the math calculation. This object is applicable when the Input Source together with the Input Number match the Math Block that is being configured. If Input Source and Input Number match the Math Block being configured and the Function Number is 0 , this object is ignored. For more details, refer to Section 1.7.

## Object Description

Index	$4 \mathrm{yO1h}(\mathrm{y} \mathrm{=} \mathrm{1} \mathrm{to} \mathrm{6)}$
Name	Math Y Input Number
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6)
Description	Math Y Input X Function Number
Access	RW
PDO Mapping	No
Value Range	See Table 5
Default Value	0 (null input)

### 2.4.73. Object 4y03h: Math Y Input Decimal Digits FV

This object describes the number of digits following the decimal point (i.e. resolution) of the input data, which is interpreted with data type Integer16 in the field value object.

Object Description

Index	$4 y 03 \mathrm{~h}(\mathrm{y}=1$ to 6$)$
Name	Math Y Input Decimal Digits FV
Object Type	ARRAY
Data Type	UNSIGNED8

Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$
Description	Math Y Input X Decimal Digits PV
Access	RW
PDO Mapping	No
Value Range	0 to 4
Default Value	$2(0.01)$

### 2.4.74. Object 4y20h: Math Y Input Scaling 1 FV

This object defines the input field value that would correspond to $0 \%$ when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object 4y03h Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

Object Description

Index	4y20h $(\mathrm{y}=1$ to 6$)$
Name	Math Y Input Scaling 1 FV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6$)$
Description	Math Y Input X Scaling 1 FV
Access	RW
PDO Mapping	No
Value Range	INTEGER16
Default Value	0

### 2.4.75. Object 4y22h: Math Y Input Scaling 2 FV

This object defines the input field value that would correspond to $100 \%$ when scaling the input for use in the math calculation. All inputs are normalized to a percentage before being used by the math function block. The object would apply the resolution defined in object $4 y 03 \mathrm{~h}$ Math Y Input Decimal Digits FV. The physical unit would match that of the input source.

Object Description

Index	4y22h $(\mathrm{y} \mathrm{=} \mathrm{1} \mathrm{to} \mathrm{6)}$
Name	Math Y Input Scaling 2 FV
Object Type	ARRAY
Data Type	INTEGER16

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6)
Description	Math Y Input X Scaling 2 FV
Access	RW
PDO Mapping	No
Value Range	INTEGER16
Default Value	$10000(100.00 \%)$

### 2.4.76. Object 4y40h: Math Y Input Gain

This object can be used to adjust the 'weight' of the input in the math calculation. It is a multiplier of the input after it has been converted into a percentage, before it is used in the math calculation. This object has a fixed resolution of 2 decimal digits.

Object Description

Index	4y40h (y = 1 to 6)
Name	Math Y Input Gain
Object Type	ARRAY
Data Type	INTEGER8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	6
Default Value	6


Sub-Index	1h to $6 \mathrm{~h}(\mathrm{X}=1$ to 6)
Description	Math Y Input X Gain
Access	RW
PDO Mapping	No
Value Range	-100 to 100
Default Value	$100(1.0)$

### 2.4.77. Object 4y50h: Math Y Operator

This object defines the actual operators that will be used in each stage of a math calculation, as described in Section 1.7. The options for this object are listed in Table 19.

Object Description

Index	4y50h $(\mathrm{y}=1$ to 6)
Name	Math Y Operator
Object Type	ARRAY
Data Type	UNSIGNED8

## Entry Description

Sub-Index	Oh
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	3
Default Value	3


Sub-Index	1h to $3 \mathrm{~h}(\mathrm{X}=1$ to 3$)$
Description	Math Y Function X Operator
Access	RW
PDO Mapping	No
Value Range	See Table 19
Default Value	12 (Plus)

### 2.4.78. Object 5010h: Constant Field Value

This object is provided to allow the user to compare against a fixed value, i.e. for setpoint control in a PID loop, or in a conditional evaluation for a logic block. The first two values in this object are fixed at FALSE (0) and TRUE (1). There are ten other sub-indexes provide for other unconstrained data.

Object Description

Index	5010 h
Name	Constant Field Value
Object Type	ARRAY
Data Type	FLOAT32

## Entry Description

Sub-Index	0
Description	Largest sub-index supported
Access	RO
PDO Mapping	No
Value Range	15
Default Value	15


Sub-Index	1
Description	Constant False
Access	RO
PDO Mapping	No


Value Range	0
Default Value	0 (false)


Sub-Index	2
Description	Constant True
Access	RO
PDO Mapping	No
Value Range	1
Default Value	1 (true)


Sub-Index	3
Description	Constant FV 3
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	3.141593


Sub-Index	4
Description	Constant FV 4
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	2.718282


Sub-Index	5
Description	Constant FV 5
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	1.414214


Sub-Index	6
Description	Constant FV 6
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	1.732051


Sub-Index	7
Description	Constant FV 7
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	2.236068


Sub-Index	8
Description	Constant FV 8
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	2.50


Sub-Index	9
Description	Constant FV 9
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	5.00


Sub-Index	10
Description	Constant FV 10
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	10.00


Sub-Index	11
Description	Constant FV 11
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	20.00


Sub-Index	12
Description	Constant FV 12
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	40.00


Sub-Index	13
Description	Constant FV 13
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	60.00


Sub-Index	14
Description	Constant FV 14
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	80.00


Sub-Index	15
Description	Constant FV 15
Access	RW
PDO Mapping	No
Value Range	Float32
Default Value	1000.00

### 2.4.79. Object 5020h: Power Supply Field Value

This read-only object is available for diagnostic feedback purposes. It reflects the measured voltage powering the controller. The physical unit for this object is volts.

Object Description

Index	5020 h
Name	Power Supply Field Value
Object Type	VARIABLE
Data Type	FLOAT32

## Entry Description

Sub-Index	Oh
Access	RO
PDO Mapping	Yes
Value Range	0 to $70[\mathrm{~V}]$
Default Value	No

### 2.4.80. Object 5030h: Processor Temperature Field Value

This read-only object is available for diagnostic feedback purposes. It reflects the measured processor temperature of the controller. The physical unit for this object is celsius.

## Object Description

Index	5030 h
Name	Processor Temperature Field Value
Object Type	VARIABLE
Data Type	FLOAT32

## Entry Description

Sub-Index	Oh
Access	RO
PDO Mapping	Yes
Value Range	-50 to $150[\mathrm{DegC}]$
Default Value	No

### 2.4.81. Object 5550h: Enable Automatic Updates

This object allows the controller to update objects to defaults automatically when an output type is changed. Be default this object is TRUE.

Object Description

Index	5550 h
Name	Enable Auto Updates
Object Type	VARIABLE
Data Type	BOOLEAN

## Entry Description

Sub-Index	Oh
Access	RW


PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	1 [TRUE]

### 2.4.82. Object 5555h: Start in Operational Mode

This object allows the unit to start in Operational mode without requiring the presence of a CANopen® Master on the network. It is intended to be used only when running the CAN-10OUT controller as a stand-alone module. This should always be set FALSE whenever it is connected to a standard master/slave network.

Object Description

Index	5555 h
Name	Start in Operational Mode
Object Type	VARIABLE
Data Type	BOOLEAN

Entry Description

Sub-Index	Oh
Access	RW
PDO Mapping	No
Value Range	0 (FALSE) or 1 (TRUE)
Default Value	0 [FALSE]

## 3. Technical Specifications

Specifications are indicative and subject to change. Actual performance will vary depending on the application and operating conditions. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process as described on https://www.axiomatic.com/service/.

### 3.1. Power Supply

Power Supply Input	$12,24,48 \mathrm{VDC}$ nominal (9...60VDC power supply range) Maximum 7A
Supply Current	110 mA at 12 V Typical, 60 mA at 24 V Typical, 40 mA at 48 V Typical
Protection	Reverse polarity protection is provided.   Power supply input section protects against transient surges and shorts.

### 3.2. Outputs

Analog Output Functions	Current [mA], Voltage [V], PWM [\%], Digital On/Off, Hotshot On/Off Ten independent (besides frequency) universal outputs (AO1 to AO10)
Output Type	High side switching (sourcing output up to 2.5A), Grounded Load Current sensing for close-loop control, current feedback on object 2370h High frequency output drive at 25 kHz (fixed for current and Hotshot types)
Current PID Loop	User configurable (use with caution)
Protection for Output+	The unit is fully protected against short circuit to ground. Unit will fail safe in the case of a short circuit condition, self-recovering when the short is removed.
Error Detection/Reaction	EMCY code generation (object 1003h) and fault reaction is possible (1029h) when an open or short circuit is detected at the output (current mode only).
Output Accuracy	Output Current mode $+/-2 \%$ full scale error   Output Voltage mode $+/-5 \%$ full scale error   Output PWM Duty Cycle mode +/-1\% full scale error
Output Resolution	Current: 1mA, Voltage: 0.1V, PWM: 0.1\%
Ramp Times	Ramp Up: 0 to 60000 ms Ramp Down: 0 to 60000 ms
Output Frequency	Three independent output timer banks - each timer bank is shared as follows: Outputs 1-4, outputs 5-8, and outputs 9-10.   Each bank is configurable from 1 Hz to 25000 Hz (conditions apply).
Dither Frequency	Three independent dithers - each dither selection is shared as follows: Outputs 1-4, outputs 5-8, and outputs 9-10.   Fully configurable from 50 Hz to 400 Hz
Dither Amplitude	Adjustable amplitude up to 400 mA

### 3.3. Communication

CAN	1 CAN 2.0B port, protocol CiA CANopen®
Network Termination	According to the CAN standard, it is necessary to terminate the network with external   termination resistors. The resistors are 120 Ohm, 0.25W minimum, metal film or similar   type. They should be placed between CAN_H and CAN_L terminals at both ends of the   network.

### 3.4. General Specifications

Microprocessor	STM32F205VGT6, 16-bit, 1024 KByte flash program memory
Control Logic	User programmable functionality using SDO object access, per CiA DS-301
User Interface	.EDS provided to interface to standard CANopen® tools
Compliance	CE marking:   Compliant to the EMC Directive Complaint to the RoHS Directive
Vibration	MIL-STD-202G, Test 204D and 214A 10.86 Grms (Random) 15 g peak (Sine)
Operating Conditions	-40 to $85{ }^{\circ} \mathrm{C}\left(-40\right.$ to $\left.185{ }^{\circ} \mathrm{F}\right)$
Storage	-50 to $105^{\circ} \mathrm{C}\left(-58\right.$ to $\left.221{ }^{\circ} \mathrm{F}\right)$
Weight	$0.60 \mathrm{lb} .(0.27 \mathrm{~kg}$ )
Packaging	Refer to Figure 16 for dimensions.   IP67 rating for product assembly   Can be mounted directly on the valve block or remotely   Suitable for moist, high shock, vibrating and non-hazardous environments

## 4. VERSION HISTORY

Version	Date	Author	Modifications
1	May 6 th, 2014	Gustavo Del Valle	Initial Draft

## OUR PRODUCTS

AC/DC Power Supplies

## Actuator Controls/Interfaces

## Automotive Ethernet Interfaces

Battery Chargers
CAN Controls, Routers, Repeaters
CAN/WiFi, CAN/Bluetooth, Routers
Current/Voltage/PWM Converters
DC/DC Power Converters
Engine Temperature Scanners
Ethernet/CAN Converters, Gateways, Switches

Fan Drive Controllers
Gateways, CAN/Modbus, RS-232
Gyroscopes, Inclinometers
Hydraulic Valve Controllers
Inclinometers, Triaxial

## I/O Controls

LVDT Signal Converters

## Machine Controls

Modbus, RS-422, RS-485 Controls
Motor Controls, Inverters
Power Supplies, DC/DC, AC/DC
PWM Signal Converters/Isolators
Resolver Signal Conditioners
Service Tools
Signal Conditioners, Converters
Strain Gauge CAN Controls
Surge Suppressors

## OUR COMPANY

Axiomatic provides electronic machine control components to the off-highway, commercial vehicle, electric vehicle, power generator set, material handling, renewable energy and industrial OEM markets. We innovate with engineered and off-the-shelf machine controls that add value for our customers.

## QUALITY DESIGN AND MANUFACTURING

We have an ISO9001:2015 registered design/manufacturing facility in Canada.

## WARRANTY, APPLICATION APPROVALS/LIMITATIONS

Axiomatic Technologies Corporation reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. Users should satisfy themselves that the product is suitable for use in the intended application. All our products carry a limited warranty against defects in material and workmanship. Please refer to our Warranty, Application Approvals/Limitations and Return Materials Process at https://www.axiomatic.com/service/.

## COMPLIANCE

Product compliance details can be found in the product literature and/or on axiomatic.com. Any inquiries should be sent to sales@axiomatic.com.

## SAFE USE

All products should be serviced by Axiomatic. Do not open the product and perform the service yourself.


This product can expose you to chemicals which are known in the State of California, USA to cause cancer and reproductive harm. For more information go to www.P65Warnings.ca.gov.

## SERVICE

All products to be returned to Axiomatic require a Return Materials Authorization Number (RMA\#) from sales@axiomatic.com. Please provide the following information when requesting an RMA number:

- Serial number, part number
- Runtime hours, description of problem
- Wiring set up diagram, application and other comments as needed


## DISPOSAL

Axiomatic products are electronic waste. Please follow your local environmental waste and recycling laws, regulations and policies for safe disposal or recycling of electronic waste.

## CONTACTS

```
Axiomatic Technologies Corporation
1445 Courtneypark Drive E.
Mississauga, ON
CANADA L5T 2E3
TEL: +19056029270
FAX: +19056029279
www.axiomatic.com
sales@axiomatic.com
```


## Axiomatic Technologies $\mathbf{O y}$

Höytämöntie 6
33880 Lempäälä
FINLAND
TEL: +358 103375750
www.axiomatic.com
salesfinland@axiomatic.com

